Algebraic Groups I. Homework 1

1. This exercise studies the endomorphism rings of the k-groups \mathbf{G}_{m} and \mathbf{G}_{a}, with k any commutative ring. (i) Prove that $\operatorname{End}_{k}\left(\mathbf{G}_{a}\right)$ consists of $f \in k[t]$ such that $f(x+y)=f(x)+f(y)$ in $k[x, y]$, and that $\operatorname{End}_{k}\left(\mathbf{G}_{m}\right)$ consists of $f \in k\left[t, t^{-1}\right]$ such that $f(x y)=f(x) f(y)$ in $k\left[x, y, x^{-1}, y^{-1}\right]$ and f has no zeros on any geometric fibers over $\operatorname{Spec} k$.
(ii) Deduce that if k is a \mathbf{Q}-algebra then naturally $\operatorname{End}_{k}\left(\mathbf{G}_{a}\right)=k$, and that if k is a field with characteristic $p>0$ then it consists of $f=\sum c_{j} t^{p^{j}}\left(c_{j} \in k\right)$. What if $k=\mathbf{Z} /\left(p^{2}\right)$?
(iii) Prove that $\operatorname{End}_{k}\left(\mathbf{G}_{m}\right)=\mathbf{Z}$ when k is a field, and deduce the same when k is an artin local ring via induction on the length of k. (Hint: reduce to the case when f vanishes on the special fiber.)
(iv) Prove that $\operatorname{End}_{k}\left(\mathbf{G}_{m}\right)=\mathbf{Z}$ for k any local ring by using (iii) to settle the case of a complete local noetherian ring, then any local noetherian ring, and finally any local ring (by using local noetherian subrings of k). Deduce that if k is any ring whatsoever, an endomorphism of the k-group \mathbf{G}_{m} is $t \mapsto t^{n}$ for a locally constant function $n: \operatorname{Spec} k \rightarrow \mathbf{Z}$.
2. Let V be a finite-dimensional vector space over a field k. This exercise develops coordinate-free versions of $\mathrm{GL}_{n}, \mathrm{SL}_{n}$, and $\mathrm{Sp}_{2 n}$ attached to V.
(i) Elements of the graded symmetric algebra $\operatorname{Sym}\left(V^{*}\right)$ are called polynomial functions on V. Justify the name (even for finite k !) by identifying them with functorial maps of sets $V_{R} \rightarrow R$ given by polynomial expressions relative to some (equivalently, any) basis of V, with R a varying k-algebra. In particular, show that det is a polynomial function on $\operatorname{End}(V)$.
(ii) For any k-algebra R, define the functors $\underline{\operatorname{End}}(V)$ and $\underline{\operatorname{Aut}}(V)$ on k-algebras R by $R \rightsquigarrow \operatorname{End}\left(V_{R}\right)$, $R \rightsquigarrow \operatorname{Aut}_{R}\left(V_{R}\right)$. Using the identification $\operatorname{End}\left(V_{R}, V_{R}\right)=\operatorname{End}(V)_{R}$, prove that End (V) is represented by $\operatorname{Sym}\left(\operatorname{End}(V)^{*}\right)$.
(iii) Define det $\in \operatorname{Sym}\left(\operatorname{End}(V)^{*}\right)$ and prove its non-vanishing locus

$$
\operatorname{GL}(V):=\operatorname{Spec}\left(\operatorname{Sym}\left(\operatorname{End}(V)^{*}\right)[1 / \operatorname{det}]\right)
$$

represents $\underline{\operatorname{Aut}}(V)$ as subfunctor of End (V). Also discuss $\mathrm{SL}(V)$ as a closed k-subgroup of GL (V).
(iv) Let $B: V \times V \rightarrow k$ be a bilinear form. Prove that the subfunctor $\operatorname{Aut}(V, B)$ of points of $\operatorname{Aut}(V)$ preserving B is represented by a closed k-subgroup of $\operatorname{GL}(V)$. (You can use coordinates in the proof!) This is pretty bad unless B is non-degenerate. (In the alternating non-degenerate case it is denoted $\mathrm{Sp}(B)$.)

Assuming non-degeneracy, a linear automorphism T of V_{R} is a B-similitude if $B_{R}(T v, T w)=\mu(T) B(v, w)$ for all $v, w \in V_{R}$ and some $\mu(T) \in R^{\times}$. Prove $\mu(T)$ is then unique, and show that the functor of B-similitudes is represented by a closed k-subgroup of $\mathrm{GL}(V) \times \mathbf{G}_{m}$. (In the alternating case it is denoted GSp(B).)
3. (i) Prove that if a connected scheme X of finite type over a field k has a k-rational point, then $X_{k^{\prime}}=X \otimes_{k} k^{\prime}$ is connected for every finite extension k^{\prime} / k (hint: $X_{k^{\prime}} \rightarrow X$ is open and closed; look at fiber over $X(k)$). Deduce that $X_{k^{\prime}}$ is connected for every extension k^{\prime} / k (i.e., X is geometrically connected over k).
(ii) Prove that if X and Y are geometrically connected of finite type over k, so is $X \times Y$; give a counterexample over $k=\mathbf{Q}$ if "geometrically" is removed. Deduce that if G is a k-group then the identity component G^{0} is a k-subgroup whose formation commutes with any extension on k.
4. Let G be a group of finite type over a field k.
(i) Prove that $\left(G_{\bar{k}}\right)_{\text {red }}$ is a closed \bar{k}-subgroup of $G_{\bar{k}}$, and prove it is smooth. Deduce that G^{0} is geometrically irreducible.
(ii) Over any imperfect field k, one can make a non-reduced k-group G such that $G_{\text {red }}$ is not a k-subgroup. Where does an attempted proof to the contrary get stuck?
(iii) Assume k is imperfect, $\operatorname{char}(k)=p>0$, and choose $a \in k-k^{p}$. Prove $x_{0}^{p}+a x_{1}^{p}+\cdots+a^{p-1} x_{p-1}^{p}=1$ defines a reduced k-group (think of $\mathrm{N}_{k\left(a^{1 / p}\right) / k}$) that is non-reduced over \bar{k} and hence not smooth!
(iv) Prove that the condition $t^{n}=1$ defines a finite closed k-subgroup $\mu_{n} \subseteq \mathbf{G}_{m}$, and show its preimage G under det: $\mathrm{GL}_{N} \rightarrow \mathbf{G}_{m}$ is a k-subgroup of GL_{N}. Accepting that SL_{N} is connected, prove $G^{0}=\mathrm{SL}_{N}$ if $\operatorname{char}(k) \nmid n$. For $k=\mathbf{Q}$ and $n=5$, prove that $G-G^{0}$ is connected but over \bar{k} has 4 connected components.

Algebraic Groups I. Homework 2

1. Let k be a perfect field, and G a 1-dimensional connected linear algebraic k-group (so G is geometrically integral over k). Assume G is in the additive case. This exercise proves G is k-isomorphic to \mathbf{G}_{a}.
(i) Let X denote its regular compactification over k. Prove that $X_{\bar{k}}$ is regular, so X is smooth (hint: \bar{k} is a direct limit of finite separable extensions of k, and unit discriminant is a sufficient test for integral closures in the Dedekind setting). Deduce that $X-G$ consists of a single physical point, say Spec k^{\prime}.
(ii) Prove that $k^{\prime} \otimes_{k} \bar{k}$ is reduced and in fact equal to \bar{k}. Deduce $k^{\prime}=k$, and prove that $X \simeq \mathbf{P}_{k}^{1}$. Show that $G \simeq \mathbf{G}_{a}$ as k-groups.
2. Let T be a torus of dimension $r \geq 1$ over a field k (e.g., a 1-dimensional connected linear algebraic group in the multiplicative case). This exercise proves that $T_{k^{\prime}} \simeq \mathbf{G}_{m}^{r}$ for some finite separable extension k^{\prime} / k.
(i) Prove that it suffices to treat the case $k=k_{s}$.
(ii) Assume $k=k_{s}$. We constructed an isomorphism $f: T_{k^{\prime}} \simeq \mathbf{G}_{m}^{r}$ as k^{\prime}-groups for some finite extension k^{\prime} / k. Let $k^{\prime \prime}=k^{\prime} \otimes_{k} k^{\prime}$, and let $p_{1}, p_{2}: \operatorname{Spec} k^{\prime \prime} \rightrightarrows \operatorname{Spec} k^{\prime}$ be the projections. Prove that $k^{\prime \prime}$ is an artin local ring with residue field k^{\prime}, and deduce that the $k^{\prime \prime}$-isomorphisms $p_{i}^{*}(f): T_{k^{\prime \prime}} \simeq \mathbf{G}_{m}^{r}$ coincide by comparing them with f on the special fiber!
(iii) For any k-vector space V, prove that the only elements of $k^{\prime} \otimes_{k} V$ with equal images under both maps to $k^{\prime \prime} \otimes_{k} V$ are the elements of V (hint: reduce to the case $V=k$ and replace k^{\prime} with any k-vector space W, and $k^{\prime \prime}$ with $W \otimes_{k} W$). Deduce that f uniquely descends to a k-isomorphism.
3. Let X and Y be schemes over a field $k, K / k$ an extension field, and $f, g: X \rightrightarrows Y$ two k-morphisms.
(i) Prove $f_{K}=g_{K}$ if and only if $f=g$. (Use surjectivity of $X_{K} \rightarrow X$ to aid in reducing to the affine case.) Likewise prove that if $Z, Z^{\prime} \subseteq X$ are closed subschemes such that $Z_{K}=Z_{K}^{\prime}$ inside of X_{K} then $Z=Z^{\prime}$,
(ii) If f_{K} is an isomorphism and X and Y are affine, prove f is an isomorphism. Then do the same without affineness (may be really hard without Serre's cohomological criterion for affineness).
(iii) Assume K / k is Galois, $\Gamma=\operatorname{Gal}(K / k)$. Prove that if a map $F: X_{K} \rightarrow Y_{K}$ satisfies $\gamma^{*}(F)=F$ for all $\gamma \in \Gamma$, then $F=f_{K}$ for a unique k-map $f: X \rightarrow Y$. Likewise, if $Z^{\prime} \subseteq X_{K}$ is a closed subscheme and $\gamma^{*}\left(Z^{\prime}\right)=Z^{\prime}$ for all $\gamma \in \Gamma$ then prove $Z^{\prime}=Z_{K}$ for a unique closed subscheme $Z \subseteq X$. Do the same for open subschemes.
4. Let $q: V \rightarrow k$ be a quadratic form on a finite-dimensional vector space V of dimension $d \geq 2$, and let $B_{q}: V \times V \rightarrow k$ be the corresponding symmetric bilinear form. Let $V^{\perp}=\left\{v \in V \mid B_{q}(v, \cdot)=0\right\}$; we call $\delta_{q}:=\operatorname{dim} V^{\perp}$ the defect of q.
(i) Prove that B_{q} uniquely factors through a non-degenerate symmetric bilinear form on V / V^{\perp}, and B_{q} is non-degenerate precisely when the defect is 0 . Prove that if $\operatorname{char}(k)=2$ then B_{q} is alternating, and deduce that $\delta_{q} \equiv \operatorname{dim} V \bmod 2$ for such k (so $\delta_{q} \geq 1$ if $\operatorname{dim} V$ is odd).
(ii) Prove that if $\delta_{q}=0$ then $q_{\bar{k}}$ admits one of the following "standard forms": $\sum_{i=1}^{n} x_{i} x_{i+n}$ if $\operatorname{dim} V=2 n$ $(n \geq 1)$, and $x_{0}^{2}+\sum_{i=1}^{n} x_{i} x_{i+n}$ if $\operatorname{dim} V=2 n+1(n \geq 1)$. Do the same if $\operatorname{char}(k)=2$ and $\delta_{q}=1$. (Distinguish whether or not $\left.q\right|_{V^{\perp}} \neq 0$.) How about the converse?
(iii) If $\operatorname{char}(k) \neq 2$, prove $\delta_{q}=0$ if and only if $q \neq 0$ and $(q=0) \subseteq \mathbf{P}^{d-1}$ is smooth. If char $(k)=2$ then prove $\delta_{q} \leq 1$ with $\left.q\right|_{V^{\perp}} \neq 0$ when $\delta_{q}=1$ if and only if $q \neq 0$ and the $(q=0)$ is smooth. (Hint: use (ii) to simplify calculations.) We say q is non-degenerate when $q \neq 0$ and $(q=0)$ is smooth in \mathbf{P}^{d-1}.
5. Learn about separability and Ω^{1} by reading in Matsumura's CRT: $\S 25$ up to before 25.3 (this is better than AG15.1-15.8 in Borel's book), and read $\S 26$ up through and including Theorem 26.3.
(i) Do Exercises 25.3, 25.4 in Matsumura, and read AG17.1 in Borel's book (noting he requires V to be geometrically reduced over $k!$).
(ii) Use 26.2 in Matsumura to prove that a finite type reduced k-scheme X is smooth on a dense open if and only if all functions fields of X (at its generic points) are separable over k.
(iii) Using separating transcendence bases, the primitive element theorem, and "denominator chasing", prove that if X is smooth on a dense open then $X\left(k_{s}\right)$ is Zariski-dense in $X_{k_{s}}$. (Hint: it suffices to prove $X\left(k_{s}\right)$ is non-empty!)

Algebraic Groups I. Homework 3

1. Let $k\left[x_{i j}\right]$ be the polynomial ring in variables $x_{i j}$ with $1 \leq i, j \leq n$. Observe that the localization $k\left[x_{i j}\right]_{\text {det }}$ has a natural Z-grading, since det $\in k\left[x_{i j}\right]$ is homogeneous. Let $k\left[x_{i j}\right]_{(\text {det })}$ denote the degree-0 part (i.e., fractions $f / \operatorname{det}^{e}$ with f homogenous of degree $e \operatorname{deg}(\operatorname{det})=e n$, for $e \geq 0$).
(i) Define $\mathrm{PGL}_{n}=\operatorname{Spec}\left(k\left[x_{i j}\right]_{(\mathrm{det})}\right)$. Identify this with the open affine $\{\operatorname{det} \neq 0\}$ in $\mathbf{P}^{n^{2}-1}$, and construct an injective map of sets $\mathrm{GL}_{n}(R) / R^{\times} \rightarrow \mathrm{PGL}_{n}(R):=\operatorname{Hom}_{k}\left(\operatorname{Spec} R, \mathrm{PGL}_{n}\right)$ naturally in k-algebras R.
(ii) For any R and any $m \in \mathrm{PGL}_{n}(R)$, show that there is an affine open covering $\left\{\operatorname{Spec} R_{i}\right\}$ of $\operatorname{Spec} R$ such that $\left.m\right|_{R_{i}} \in \mathrm{GL}_{n}\left(R_{i}\right) / R_{i}^{\times}$. Deduce that $\mathrm{PGL}_{n}(R)$ is the sheafification of the presheaf $U \mapsto \mathrm{GL}_{n}(U) / \mathrm{GL}_{1}(U)$ on $\operatorname{Spec} U$, and that PGL_{n} has a unique k-group structure such that $\mathrm{GL}_{n} \rightarrow \mathrm{PGL}_{n}$ is a k-homomorphism.
(iii) Prove that if R is local then $\mathrm{GL}_{n}(R) / R^{\times}=\mathrm{PGL}_{n}(R)$, and construct a counterexample with $n=2$ for any Dedekind domain R whose class group has nontrivial 2-torsion. (Hint: $I \oplus I \simeq R^{2}$ when I is 2-torsion.)
(iv) Write out the effect of multiplication and inversion on PGL_{n} at the level of coordinate rings.
2. The scheme-theoretic kernel of a k-homomorphism $f: G^{\prime} \rightarrow G$ between k-group schemes is the schemetheoretic fiber $f^{-1}(e)$ (with $e: \operatorname{Spec} k \rightarrow G$ the identity). It is denoted ker f.
(i) Prove that if R is any k-algebra then $(\operatorname{ker} f)(R)=\operatorname{ker}\left(G^{\prime}(R) \rightarrow G(R)\right)$ as subgroups of $G^{\prime}(R)$; deduce that $\operatorname{ker} f$ is a normal k-subgroup of G^{\prime}.
(ii) Prove that the homomorphism $\mathrm{GL}_{n} \rightarrow \mathrm{PGL}_{n}$ constructed in Exercise 1 is surjective with schemetheoretic kernel equal to the k-subgroup $D \simeq \mathrm{GL}_{1}$ of scalar diagonal matrices.
(iii) Let $\mu_{n}=\operatorname{ker}\left(t^{n}: \mathbf{G}_{m} \rightarrow \mathbf{G}_{m}\right)=\operatorname{Spec}\left(k[t, 1 / t] /\left(t^{n}-1\right)\right)$. Identify $\mu_{n}(R)$ with the group of nth roots of unity in R^{\times}naturally in any k-algebra R, and prove that the homomorphism $\mathrm{SL}_{n} \rightarrow \mathrm{PGL}_{n}$ obtained by restriction of the map in (ii) to SL_{n} is surjective, with kernel μ_{n}.
3. Let G be a k-group of finite type equipped with an action on k-scheme V of finite type. Let $W, W^{\prime} \subseteq V$ be closed subschemes. Define the functorial centralizer $\underline{Z}_{G}(W)$ and functorial transporter $\operatorname{Tran}_{G}\left(W, W^{\prime}\right)$ as follows: for any k-scheme $S, \underline{Z}_{G}(W)(S)$ is the subgroup of points $g \in G(S)$ such that the g-action on V_{S} is trivial, and $\operatorname{Tran}_{G}\left(W, W^{\prime}\right)(S)$ is the subset of points $g \in G(S)$ such that $g .\left(W_{S}\right) \subseteq W_{S}^{\prime}$ (as closed subschemes of $\left.V_{S}\right)$. The functorial normalizer $\underline{N}_{G}(W)$ is $\underline{\operatorname{Tran}}_{G}(W, W)$.

These are of most interest when W is a smooth closed k-subgroup of $V=G$ equipped with the left translation action. Below, assume W is geometrically reduced and separated over k.
(i) Prove W is smooth on a dense open, so $W\left(k_{s}\right)$ is Zariski-dense in $W_{k_{s}}$ (by Exercise 5(iii), HW2). Hint: if $k=k_{s}$ then $W_{\bar{k}} \rightarrow W$ is a homeomorphism, and in general use Galois descent (as in Exercise 3(iii), HW2).
(ii) For each $w \in W(k)$, let $\alpha_{w}: G \rightarrow W$ be the orbit map $g \mapsto g . w$. Define $Z_{G}(w)=\alpha_{w}^{-1}(w)$. Prove that $Z_{G}(w)(S)$ is the subgroup of points $g \in G(S)$ such that $g \cdot w_{S}=w_{S}$ in $W(S)$.
(iii) If $k=k_{s}$ prove $\cap_{w \in W(k)} Z_{G}(w)$ represents $\underline{Z}_{G}(W)$. (You need to use separatedness.) For general k apply Galois descent to $Z_{G_{k_{s}}}\left(W_{k_{s}}\right)$; the representing scheme is denoted $Z_{G}(W)$.
(iv) If $k=k_{s}$, prove that $\cap_{w \in W(k)} \alpha_{w}^{-1}\left(W^{\prime}\right)$ represents $\operatorname{Tran}_{G}\left(W, W^{\prime}\right)$. Then use Galois descent to prove representability by a closed subscheme $\operatorname{Tran}_{G}\left(W, W^{\prime}\right)$ for any k. The representing scheme is denoted $\operatorname{Tran}_{G}(W, W)$, so $N_{G}(W):=\operatorname{Tran}_{G}(W, W)$ represents $\underline{N}_{G}(W)$.
(v) Prove that for any k-algebra R and $g \in N_{G}(W)(R)$, the g-action $V_{R} \simeq V_{R}$ carries W_{R} isomorphically onto itself, and deduce that $N_{G}(W)$ is a k-subgroup of G. (Hint: reduce to artin local R and $k=\bar{k}$.)
4. Let G be a k-group of finite type. This exercise builds on the previous one. Note G is separated: $\Delta_{G / k}$ is a base change of $e: \operatorname{Spec} k \rightarrow G$! If G is smooth then the scheme-theoretic center of G is $Z_{G}:=Z_{G}(G)$.
(i) Let G be SL_{n} or GL_{n} or PGL_{n}, and let T be the diagonal k-torus in each case. Prove that $Z_{G}(T)=T$ (as subschemes of G, not just at the level of geometric points!). Hint: to deduce the PGL_{n}-case from the GL_{n}-case, prove that the diagonal k-torus in GL_{n} is the scheme-theoretic preimage of the one in PGL_{n}.
(ii) Using (i), prove $Z_{\mathrm{SL}_{n}}=\mu_{n}, Z_{\mathrm{PGL}_{n}}=1$, and $Z_{\mathrm{GL}_{n}}$ is the k-subgroup of scalar diagonal matrices.
(iii) Prove that for a smooth closed subscheme V in G, the formation of $Z_{G}(V)$ and $N_{G}(V)$ commutes with any extension of the ground field. (Hint: use the functorial characterizations, not the explicit constructions.) This applies to Z_{G} when G is smooth.

Algebraic Groups I. Homework 4

1. Let $T \subset \mathrm{Sp}_{2 n}$ be the points $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$ for diagonal $t \in \mathrm{GL}_{n}$. Prove $Z_{G}(T)=T$ (so T is a maximal torus!); deduce $Z_{\mathrm{Sp}_{2 n}}=\mu_{2}$. The Appendix "Properties of orthogonal groups" computes $Z_{\mathrm{SO}(q)}$ (see Theorem 1.7).
2. Prove that PGL_{n} is smooth using the infinitesimal criterion, and prove that it is connected by a suitable "action" argument. The Appendix "Properties of orthogonal groups" treats the harder analogue for SO (q).
3. Let X be a scheme over a field k, and $x \in X(k)$. Recall that $\operatorname{Tan}_{x}(X)$ is identified as a set with the fiber of $X(k[\epsilon]) \rightarrow X(k)$ over x. Let $k\left[\epsilon, \epsilon^{\prime}\right]=k\left[t, t^{\prime}\right] /\left(t, t^{\prime}\right)^{2}$, so this is 3-dimensional with basis $\left\{1, \epsilon, \epsilon^{\prime}\right\}$.
(i) For $c \in k$, consider the k-algebra endomorphism of $k[\epsilon]$ defined by $\epsilon \mapsto c \epsilon$. Show that the resulting endomorphism of $X(k[\epsilon])$ over $X(k)$ restricts to scalar multiplication by c on the fiber $\operatorname{Tan}_{x}(X)$.
(ii) Using the two natural quotient maps $k\left[\epsilon, \epsilon^{\prime}\right] \rightarrow k[\epsilon]$, define a natural map

$$
X\left(k\left[\epsilon, \epsilon^{\prime}\right]\right) \rightarrow X(k[\epsilon]) \times_{X(k)} X(k[\epsilon])
$$

and prove it is bijective. Using the natural quotient map $k\left[\epsilon, \epsilon^{\prime}\right] \rightarrow k[\epsilon]$, show that the resulting map

$$
X(k[\epsilon]) \times_{X(k)} X(k[\epsilon]) \stackrel{\tilde{F}}{\leftarrow} X\left(k\left[\epsilon, \epsilon^{\prime}\right]\right) \rightarrow X(k[\epsilon])
$$

induces addition on $\operatorname{Tan}_{x}(X)$: the k-linear structure on $\operatorname{Tan}_{x}(X)$ is encoded by the functor of X !
(iii) For $(X, x)=(G, e)$ with a k-group G, relate addition on $\operatorname{Tan}_{x}(X)$ to the group law on G : for $m: G \times G \rightarrow G$, show that $\operatorname{Tan}_{e}(G) \times \operatorname{Tan}_{e}(G)=\operatorname{Tan}_{(e, e)}(G \times G) \rightarrow \operatorname{Tan}_{e}(G)$ is addition.
4. Let A be a finite-dimensional associative algebra over a field k. Define the ring functor \underline{A} on k-algebras by $\underline{A}(R)=A \otimes_{k} R$ and the group functor \underline{A}^{\times}by $\underline{A}^{\times}(R)=\left(A \otimes_{k} R\right)^{\times}$.
(i) Prove that \underline{A} is represented by an affine space over k. Using the k-scheme map $\mathrm{N}_{A / k}: \underline{A} \rightarrow \mathbf{A}_{k}^{1}$ defined functorially by $u \mapsto \operatorname{det}\left(m_{u}\right)$, where $m_{u}: A \otimes_{k} R \rightarrow A \otimes_{k} R$ is left multiplication by $u \in \underline{A}(R)$, prove that \underline{A}^{\times}is represented by the open affine subscheme $\mathrm{N}_{A / k}^{-1}\left(\mathbf{G}_{m}\right)$. (This is often called " A^{\times}viewed as a k-group", a phrase that is, strictly speaking, meaningless, since A^{\times}does not encode the k-algebra A.)
(ii) For $A=\operatorname{Mat}_{n}(k)$ show that $\underline{A}^{\times}=\mathrm{GL}_{n}$, and for $k=\mathbf{Q}$ and $A=\mathbf{Q}(\sqrt{d})$ identify it with an explicit Q-subgroup of GL_{2} (depending on d).
(iii) How does the kernel of $\mathrm{N}_{A / k}: \underline{A}^{\times} \rightarrow \mathbf{G}_{m}$ (the group of norm-1 units) relate to Exercise 4(iii) in HW1 as a special case? For $A=\operatorname{Mat}_{n}(k)$, show that this homomorphism is the nth power (!) of the determinant.
5. This exercise develops a very important special case of Exercise 4. Let A be a finite-dimensional central simple algebra over k. By general theory, this is exactly the condition that $A_{\bar{k}} \simeq \operatorname{Mat}_{n}(\bar{k})$ as \bar{k}-algebras (for some $n \geq 1$), and such an isomorphism is unique up to conjugation by a unit (Skolem-Noether theorem).
(i) By a clever application of the Skolem-Noether theorem (see Exercise 30, Chapter 3 of the book by Farb/Dennis on non-commutative algebra), it is a classical fact that the linear derivations of a matrix algebra over a field are precisely the inner derivations (i.e., $x \mapsto y x-x y$ for some y). Combining this with lengthinduction on artin local rings, prove the Skolem-Noether theorem for $\operatorname{Mat}_{n}(R)$ for any artin local ring R (i.e., all R-algebra automorphisms are conjugation by a unit).
(ii) Construct an affine k-scheme I of finite type such that naturally $I(R)=\operatorname{Isom}_{R}\left(A_{R}, \operatorname{Mat}_{n}(R)\right)$, the set of R-algebra isomorphisms. Note that $I(\bar{k})$ is non-empty! Prove I is smooth by checking the infinitesimal criterion for $I_{\bar{k}}$ with the help of (i). Deduce that $A_{K} \simeq \operatorname{Mat}_{n}(K)$ for a finite separable extension K / k.
(iii) By (ii), we can choose a finite Galois extension K / k and a K-algebra isomorphism $\theta: A_{K} \simeq \operatorname{Mat}_{n}(K)$, and by Skolem-Noether this is unique up to conjugation by a unit. Prove that for any choice of θ, the determinant map transfers to a multiplicative map $\underline{A}_{K} \rightarrow \mathbf{A}_{K}^{1}$ which is independent of θ. Deduce that it is $\operatorname{Gal}(K / k)$-equivariant, and so descends to a multiplicative map $\operatorname{Nrd}_{A / k}: \underline{A} \rightarrow \mathbf{A}_{k}^{1}$ which "becomes" the determinant over any extension F / k for which $A_{F} \simeq \operatorname{Mat}_{n}(F)$. Prove that $\operatorname{Nrd}_{A / k}^{n}=\mathrm{N}_{A / k}$ (explaining the name reduced norm for $\left.\operatorname{Nrd}_{A / k}\right)$, and conclude that $\underline{A}^{\times}=\operatorname{Nrd}_{A / k}^{-1}\left(\mathbf{G}_{m}\right)$.
(iv) Let $\operatorname{SL}(A)$ denote the scheme-theoretic kernel of $\operatorname{Nrd}_{A / k}: \underline{A}^{\times} \rightarrow \mathbf{G}_{m}$. Prove that its formation commutes with any extension of the ground field, and that it becomes isomorphic to SL_{n} over \bar{k}. In particular, $\mathrm{SL}(A)$ is smooth and connected; it is a "twisted form" of SL_{n}. (This is false for ker $\mathrm{N}_{A / k}$ whenever char $(k) \mid n!$)

Algebraic Groups I. Homework 5

1. Let k be a field, U_{n} the standard strictly upper-triangular unipotent k-subgroup of GL_{n}. Prove that no nontrivial k-group scheme is isomorphic to closed k-subgroups of \mathbf{G}_{a} and \mathbf{G}_{m}. (If $\operatorname{char}(k)=p>0$, the key is to prove that μ_{p} is not a k-subgroup of \mathbf{G}_{a}.) Deduce that $T \cap U_{n}=1$ for any k-torus T in GL_{n}.
2. Let a smooth finite type k-group G act linearly on a finite-dimensional V. Let \underline{V} denote the affine space whose A-points are V_{A}. Define $\underline{V}^{G}(A)$ to be the set of $v \in V_{A}$ on which G_{A} acts trivially.
(i) Prove that \underline{V}^{G} is represented by the closed subscheme associated to a k-subspace of V (denoted of course as V^{G}). Hint: use Galois descent to reduce to the case $k=k_{s}$, and then show $V^{G(k)}$ works.
(ii) For an extension field K / k, prove that $\left(V_{K}\right)^{G_{K}}=\left(V^{G}\right)_{K}$ inside of V_{K}.
3. This exercise develops the important concept of Weil restriction of scalars in the affine case. It is an analogue of viewing a complex manifold as a real manifold with twice the dimension (and "complex points" become "real points"). Let k be a field, k^{\prime} a finite commutative k-algebra (not necessarily a field!), and X^{\prime} an affine k^{\prime}-scheme of finite type. Consider the functor $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right): A \rightsquigarrow X^{\prime}\left(k^{\prime} \otimes_{k} A\right)$ on k-algebras.
(i) By considering $X^{\prime}=\mathbf{A}_{k^{\prime}}^{n}$ and then any X^{\prime} via a closed immersion into an affine space, prove that this functor is represented by an affine k-scheme of finite type, again denoted $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)$. Prove its formation naturally commutes with products in X^{\prime}, and compute $\mathrm{R}_{k^{\prime} / k}\left(\mathbf{G}_{m}\right)$ inside $\mathrm{R}_{k^{\prime} / k}\left(\mathbf{A}_{k^{\prime}}^{1}\right)$. What if $k^{\prime}=0$?
(ii) Prove $\mathrm{R}_{k^{\prime} / k}\left(\operatorname{Spec} k^{\prime}\right)=\operatorname{Spec} k$, and explain why $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)$ is naturally a k-group when X^{\prime} is a k^{\prime}-group.
(iii) For an extension field K / k, prove that $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)_{K} \simeq \mathrm{R}_{K^{\prime} / K}\left(X_{K^{\prime}}^{\prime}\right)$ for $K^{\prime}=k^{\prime} \otimes_{k} K$. Taking $K=\bar{k}$, use the infinitesimal criterion to prove that if k^{\prime} is a field then $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)$ is k-smooth when X^{\prime} is k^{\prime}-smooth. (Can you see it directly from the construction?) Warning: if k^{\prime} / k is not separable then $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)$ can be empty (resp. disconnected) when X^{\prime} is non-empty (resp. geometrically integral)!
(iv) If k^{\prime} / k is a separable extension field, prove $\mathrm{R}_{k^{\prime} / k}\left(X^{\prime}\right)_{k_{s}} \simeq \prod_{\sigma} \sigma^{*}\left(X^{\prime}\right)$ with σ varying through $\operatorname{Hom}_{k}\left(k^{\prime}, k_{s}\right)$. Transfer the natural $\operatorname{Gal}\left(k_{s} / k\right)$-action on the left over to the right and describe it.
4. Let $\Gamma=\operatorname{Gal}\left(k_{s} / k\right)$. For any k-torus T, define the character group $\mathrm{X}(T)=\operatorname{Hom}_{k_{s}}\left(T_{k_{s}}, \mathbf{G}_{m}\right)$. A Γ-lattice is a finite free \mathbf{Z}-module equipped with a Γ-action making an open subgroup act trivially.
(i) Prove $\mathrm{X}(T)$ is a finite free \mathbf{Z}-module of rank $\operatorname{dim} T$. Describe a natural Γ-lattice structure on $\mathrm{X}(T)$.
(ii) For a Γ-lattice Λ, prove $R \rightsquigarrow \operatorname{Hom}\left(\Lambda, R_{k_{s}}^{\times}\right)^{\Gamma}$ is represented by a k-torus $\mathrm{D}_{k}(\Lambda)$, the dual of Λ. (Hint: use finite Galois descent to reduce to Λ with trivial Γ-action.) Prove $\Lambda \simeq \mathrm{X}\left(\mathrm{D}_{k}(\Lambda)\right)$ naturally as Γ-lattices.
(iii) Prove $T \simeq \mathrm{D}_{k}(\mathrm{X}(T))$ naturally as k-tori, so the category of k-tori is anti-equivalent to the category of Γ-lattices. Describe scalar extension in such terms, and prove T is k-split if and only if $\mathrm{X}(T)=\mathrm{X}(T)^{\Gamma}$.
(iv) Prove a map of k-tori $T^{\prime} \rightarrow T$ is surjective if and only if $\mathrm{X}(T) \rightarrow \mathrm{X}\left(T^{\prime}\right)$ is injective. $\operatorname{Prove} \operatorname{ker}\left(T^{\prime} \rightarrow T\right)$ is a k-torus (resp. finite, resp. 0) if and only if $\operatorname{coker}\left(X(T) \rightarrow X\left(T^{\prime}\right)\right)$ is torsion-free (resp. finite, resp. 0). Inducting on $\operatorname{dim} T$, prove smooth connected k-subgroups M of T are k-tori. (Hint: prove $M(\bar{k})$ is divisible.)
(v) If k^{\prime} / k is a finite separable subextension of k_{s}, prove that $\mathrm{R}_{k^{\prime} / k}\left(T^{\prime}\right)$ is a k-torus if T^{\prime} is a k^{\prime}-torus. (For $T^{\prime}=\mathbf{G}_{m}$, this is " $k^{\prime \times}$ viewed as a k-group".) By functorial considerations, prove $\mathrm{X}\left(\mathrm{R}_{k^{\prime} / k}\left(T^{\prime}\right)\right)=\operatorname{Ind}_{\Gamma^{\prime}}^{\Gamma}(\mathrm{X}(T))$ with Γ^{\prime} the open subgroup corresponding to k^{\prime}. For every k-torus T, construct a surjective k-homomorphism $\prod_{i} \operatorname{Res}_{k_{i}^{\prime} / k}\left(\mathbf{G}_{m}\right) \rightarrow T$ for finite separable extensions k_{i}^{\prime} / k. Conclude that k-tori are unirational over k.
(vi) (optional) For a finite extension field k^{\prime} / k, define a norm map $\mathrm{N}_{k^{\prime} / k}: \mathrm{R}_{k^{\prime} / k}\left(\mathbf{G}_{m}\right) \rightarrow \mathbf{G}_{m}$. Prove its kernel is a torus when k^{\prime} / k is separable (e.g., $k=\mathbf{R}!$), and relate to HW1, Exercise 4(iii) for imperfect k.
5. Consider a k-torus $T \subset \operatorname{GL}(V)$, with k infinite. Let $A_{T} \subset \operatorname{End}(V)$ be the commutative k-subalgebra generated by $T(k)$ (Zariski-dense in T since k is infinite, due to unirationality from Exercise 4(iv)).
(i) Using Jordan decomposition, prove that all elements of $T(\bar{k})$ are semisimple in $\operatorname{End}\left(V_{\bar{k}}\right)$.
(ii) Assume $k=k_{s}$. Prove A_{T} is a product of copies of k, and $T(k)=A_{T}^{\times}$when T is maximal.
(iii) Using Galois descent and the end of $4(\mathrm{v})$, prove $\left(A_{T}\right)_{k_{s}}=A_{T_{k_{s}}}$, and deduce $T(k)=A_{T}^{\times}$for maximal T. Show naturally $T \simeq \operatorname{Res}_{A_{T} / k}\left(\mathbf{G}_{m}\right)$, and that maximal k-subtori in $\mathrm{GL}(V)$ and maximal étale commutative k-subalgebras of $\operatorname{End}(V)$ are in bijective correspondence. Generalize to finite k with another definition of A_{T}, and to central simple algebras in place of $\operatorname{End}(V)$ (hint: use HW4 Exercise 5(ii) and Galois descent).
(iv) For any (possibly finite) k, prove a smooth connected commutative k-group is a torus if and only if its \bar{k}-points are semisimple. (Use the end of Exercise 4(iv).)

Algebraic Groups I. Homework 6

1. Use the method of proof of Proposition 4.10, Chapter I, to prove the following scheme-theoretic version: if k is a field and a smooth unipotent affine k-group G is equipped with a left action on a quasi-affine k-scheme V of finite type then for any $v \in V(k)$ the smooth locally closed image of the orbit map $G \rightarrow V$ defined by $g \mapsto g v$ is actually closed in V.
(Hint: to begin, let $k[V]$ denote the k-algebra of global functions on V and prove that $R \otimes_{k} k[V]$ is the R-algebra of global functions on V_{R} for any k-algebra R. Use this to construct a functorial k-linear representation of G on $k[V]$ respecting the k-algebra structure. Borel's K should be replaced with k after passing to the case $k=\bar{k}$. Note that it is not necessary to assume Borel's F is non-empty; the argument directly proves J meets k^{\times}, so $J=(1)$ and hence F is empty.)
2. A k-homomorphism $f: G^{\prime} \rightarrow G$ between k-groups of finite type is an isogeny if it is surjective and flat with finite kernel.
(i) Prove that a surjective homomorphism between smooth finite type k-groups of the same dimension is an isogeny. (The Miracle Flatness Theorem will be useful here.)
(ii) Prove that a map $f: T^{\prime} \rightarrow T$ between k-tori is an isogeny if and only if the corresponding map $\mathrm{X}(T) \rightarrow \mathrm{X}\left(T^{\prime}\right)$ between Galois lattices is injective with finite cokernel.
(iii) Prove the following are equivalent for a k-torus T : (a) it contains \mathbf{G}_{m} as a k-subgroup, (b) there exists a surjective k-homomorphism $T \rightarrow \mathbf{G}_{m}$, and $(\mathrm{c}) \mathrm{X}(T)_{\mathbf{Q}}$ has a nonzero $\operatorname{Gal}\left(k_{s} / k\right)$-invariant vector. Such T are called k-isotropic; otherwise we say T is k-anisotropic. In general, a smooth affine k-group is called k-isotropic if it contains \mathbf{G}_{m} as a k-subgroup, and k-anisotropic otherwise.
(iv) Let T be a k-torus. Prove the existence of a k-split k-subtorus T_{s} that contains all others, as well as a k-anisotropic k-subtorus T_{a} that contains all others. Also prove that $T_{s} \times T_{a} \rightarrow T$ is an isogeny. Compute T_{s} and T_{a} for $T=\mathrm{R}_{k^{\prime} / k}\left(\mathbf{G}_{m}\right)$ for a finite separable extension k^{\prime} / k.
3. (i) For a k-torus T, prove the existence of an étale k-group $\mathrm{Aut}_{T / k}$ representing the automorphism functor $S \rightsquigarrow \operatorname{Aut}_{S}\left(T_{S}\right)$. (Hint: if T is k-split then show that the constant k-group associated to $\operatorname{Aut}(\mathrm{X}(T)) \simeq \mathrm{GL}_{r}(\mathbf{Z})$ does the job. In general let k^{\prime} / k be finite Galois such that $T_{k^{\prime}}$ is k^{\prime}-split, and use Galois descent.)
(ii) Using the existence of the étale k-group $\mathrm{Aut}_{T / k}$, prove that if a connected k-group scheme G is equipped with an action on T then the action must be trivial. Deduce that if T is a normal k-subgroup of a connected finite type k-group G then it is a central k-subgroup. Give an example of a smooth connected k-group containing \mathbf{G}_{a} as a non-central normal k-subgroup. (Hint: look inside SL_{2}.)
4. Let T be a k-torus in a k-group G of finite type. This exercise uses $\mathrm{Aut}_{T / k}$ from Exercise 3.
(i) Construct a k-morphism $N_{G}(T) \rightarrow$ Aut $_{T / k}$ with kernel $Z_{G}(T)$. Prove $W(G, T):=N_{G}(T)(\bar{k}) / Z_{G}(T)(\bar{k})$ is naturally a finite subgroup of $\operatorname{Aut}_{\mathbf{z}}(\mathrm{X}(T))$. If $f: G^{\prime} \rightarrow G$ is surjective with finite kernel and T^{\prime} is a k-torus in G^{\prime} containing ker f with $f\left(T^{\prime}\right)=T$ then prove $W\left(G^{\prime}, T^{\prime}\right) \rightarrow W(G, T)$ is an isomorphism.
(ii) For $G=\mathrm{GL}_{n}, \mathrm{PGL}_{n}, \mathrm{SL}_{n}, \mathrm{Sp}_{2 n}$ and T the k-split diagonal maximal k-torus (so $Z_{G}(T)=T$), respectively identify $\mathrm{X}(T)$ with $\mathbf{Z}^{n}, \mathbf{Z}^{n} /$ diag, $\left\{m \in \mathbf{Z}^{n} \mid \sum m_{j}=0\right\}$, and \mathbf{Z}^{n}. Prove $N_{G}(T)(k) / Z_{G}(T)(k) \subset$ $\operatorname{Aut}_{\mathbf{Q}}\left(\mathrm{X}(T)_{\mathbf{Q}}\right)$ is S_{n} for the first three, and $S_{n} \ltimes\langle-1\rangle^{n}$ for $\mathrm{Sp}_{2 n}$, all with natural action. (Hint: to control $N_{G}(T)$, via $G \hookrightarrow \mathrm{GL}(V)$ decompose V as a direct sum of T-stable lines with distinct eigencharacters.)
5. Let (V, q) be a non-degenerate quadratic space over a field k with $\operatorname{dim} V \geq 2$. This exercise proves $\mathrm{SO}(q)$ contains \mathbf{G}_{m} (i.e., it is k-isotropic in the sense of Exercise 2(iii)) if and only if $q=0$ has a solution in $V-\{0\}$.
(i) If $q=0$ has a nonzero solution v in V, prove that v lies in a hyperbolic plane H with $H \oplus H^{\perp}=V$. (If $\operatorname{char}(k)=2$ and $\operatorname{dim} V$ is odd, work over \bar{k} to show $v \notin V^{\perp}$.) Use this to construct a \mathbf{G}_{m} inside of $\operatorname{SO}(q)$.
(ii) If $\mathrm{SO}(q)$ contains \mathbf{G}_{m} as a k-subgroup S, prove that $q=0$ has a nonzero solution in V. (Hint: apply Exercise 5 (iii) in HW5 to the 2-dimensional k-split k-torus T generated in $\mathrm{GL}(V)$ by S and the central \mathbf{G}_{m}. If $A \simeq k^{r}$ is the corresponding " k-split" commutative k-subalgebra of $\operatorname{End}(V)$, prove the resulting inclusion $\mathbf{G}_{m}=S \hookrightarrow T=\mathrm{R}_{A / k}\left(\mathbf{G}_{m}\right)=\mathbf{G}_{m}^{r}$ is $t \mapsto\left(t^{h_{1}}, \ldots, t^{h_{r}}\right)$. Use the A-module structure on V to find a k-basis $\left\{e_{i}\right\}$ that identifies S with $\operatorname{diag}\left(t^{n_{1}}, \ldots, t^{n_{d}}\right)$ for $n_{1} \leq \cdots \leq n_{d}$ with $\sum n_{i}=0$. Prove $n_{1}<0<n_{d}$, and if $q=\sum_{i \leq j} a_{i j} x_{i} x_{j}$ in these coordinates then prove $n_{i}+n_{j}=0$ when $a_{i j} \neq 0$. Deduce $q(v)=0$ for any v in the span of the e_{i} for which $n_{i}<0$, or for which $n_{i}>0$.)

Algebraic Groups I. Homework 7

0. (optional) Read the proof (p. 101 in Mumford's "Abelian Varieties") of Cartier's theorem: group schemes G locally of finite type over a field of characteristic 0 are smooth! (This uses the left-invariant derivations.)
1. (i) Prove that ∂_{x} is an invariant vector field on \mathbf{G}_{a}, and $t^{-1} \partial_{t}$ is an invariant vector field on \mathbf{G}_{m}.
(ii) Let A be a finite-dimensional associative k-algebra, and \underline{A}^{\times}the associated k-group of units. Prove $\operatorname{Tan}_{e}\left(\underline{A}^{\times}\right)=A$ naturally, and that the Lie algebra structure is then $\left[a, a^{\prime}\right]=a a^{\prime}-a^{\prime} a$. Using $A=\operatorname{End}(V)$, compute $\mathfrak{g l}(V)$. Use this to compute the Lie algebras $\mathfrak{s l}(V), \mathfrak{p g l}(V), \mathfrak{s p}(B), \mathfrak{g s p}(B), \mathfrak{s o}(q)$.
(iii) Read Corollary A.7.6 and Lemma A.7.13 (and the paragraph preceding it) in the book Pseudoreductive groups. Compute the p-Lie algebra structure on $\operatorname{Lie}\left(\underline{A}^{\times}\right), \operatorname{Lie}\left(\mathbf{G}_{m}\right)$, and $\operatorname{Lie}\left(\mathbf{G}_{a}\right)$ if $\operatorname{char}(k)=p>0$.
2. Let G be a smooth group of dimension $d>0$ over k.
(i) Define the concept of left-invariant differential i-form for $i \geq 0$, and prove the space $\Omega_{G}^{i, \ell}(G)$ of such form has dimension $\binom{d}{i}$. Compute the 1-dimensional $\Omega_{G}^{d, \ell}(G)$ for $\operatorname{GL}(V), \mathrm{SL}(V)$, and $\operatorname{PGL}(V)$.
(ii) Using right-translation, construct a linear representation of G on $\Omega_{G}^{d, \ell}(G)$; the associated character $\chi_{G}: G \rightarrow \mathbf{G}_{m}$ is the modulus character. Prove $\left.\chi_{G}\right|_{Z_{G}}=1$ and deduce that $\chi_{G}=1$ if $G / Z_{G}=\mathscr{D}\left(G / Z_{G}\right)$.
(iii) (optional) If k is local (allow \mathbf{R}, \mathbf{C}) and X is smooth, use the k-analytic inverse function theorem to equip $X(k)$ with a functorial k-analytic manifold structure, and use k-analytic Change of Variables to assign a measure on $X(k)$ to a nowhere-vanishing $\omega \in \Omega_{X}^{\operatorname{dim} X}(X)$. (Serre's "Lie groups and Lie algebras" does k-analytic foundations.) Relate with Haar measures, and prove $\left.\chi_{G}^{ \pm 1}\right|_{G(k)}$ is the classical modulus character.
3. Let K / k be a degree-2 finite étale algebra (i.e., a separable quadratic field extension or $k \times k$), and let σ be the unique non-trivial k-automorphism of K; note that $K^{\sigma}=k$. A σ-hermitian space is a pair (V, h) consisting of a finite free K-module equipped with a perfect σ-semilinear form $h: V \times V \rightarrow K$ (i.e., $h\left(c v, v^{\prime}\right)=c h\left(v, v^{\prime}\right), h\left(v, c v^{\prime}\right)=\sigma h\left(v, v^{\prime}\right)$, and $h\left(v^{\prime}, v\right)=\sigma\left(h\left(v, v^{\prime}\right)\right)$. Note $v \mapsto h(v, v)$ is a quadratic form $q_{h}: V \rightarrow k$ over k satisfying $q_{h}(c v)=\mathrm{N}_{K / k}(c) q_{h}(v)$ for $c \in K, v \in V$, and $\operatorname{dim}_{k} V$ is even (char $(k)=2$ ok!).

The unitary group $\mathrm{U}(h)$ over k is the subgroup of $\mathrm{R}_{K / k}(\mathrm{GL}(V))$ preserving h. Using $\mathrm{R}_{K / k}(\mathrm{SL}(V))$ gives the special unitary group $\mathrm{SU}(h)$. Example: $V=F$ finite étale over K with an involution σ^{\prime} lifting σ, and $h\left(v, v^{\prime}\right):=\operatorname{Tr}_{F / K}\left(v \sigma^{\prime}\left(v^{\prime}\right)\right)$; e.g., F and K CM fields, k totally real, and complex conjugations σ^{\prime} and σ.
(i) If $K=k \times k$, prove $V \simeq V_{0} \times V_{0}^{\vee}$ with $h\left((v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right)=\left(\ell^{\prime}(v), \ell\left(v^{\prime}\right)\right)$ for a k-vector space V_{0}. Identify $\mathrm{U}(h)$ with $\mathrm{GL}\left(V_{0}\right)$ carrying $\mathrm{SU}(h)$ to $\mathrm{SL}\left(V_{0}\right)$. Compute q_{h} and prove non-degeneracy.
(ii) In the non-split case prove that $\mathrm{U}(h)_{K} \simeq \mathrm{GL}_{n}$ carrying $\mathrm{SU}(h)$ to $\mathrm{SL}_{n}\left(n=\operatorname{dim}_{K} V\right)$. Prove $\mathrm{U}(h)$ is smooth and connected with derived group $\mathrm{SU}(h)$ and center \mathbf{G}_{m}, and q_{h} is non-degenerate. Compute $\mathfrak{s u}(h)$.
(iii) Identify $\mathrm{U}(h)$ with a k-subgroup of $\mathrm{SO}\left(q_{h}\right)$. Discuss the split case, and all cases with $k=\mathbf{R}$.
4. Let a smooth k-group H act on a separated k-scheme Y. For a k-scheme S, let $Y^{H}(S)$ be the set of $y \in Y(S)$ invariant by the $H_{S^{-}}$-action on Y_{S} (i.e., $y_{S^{\prime}}$ is $H\left(S^{\prime}\right)$-invariant for all S-schemes S^{\prime}).
(i) If $k=k_{s}$, prove Y^{H} is represented by the closed subscheme $\cap_{h \in H(k)} Y^{h}$ where $Y^{h}=\alpha_{h}^{-1}\left(\Delta_{Y / k}\right)$ for $\alpha_{h}: Y \rightarrow Y \times Y$ the map $y \mapsto(y, h . y)$. Then prove representability by a closed subscheme of Y for general k by Galois descent. Relate this to Exercise 2 in HW5.
(ii) For $y \in Y^{H}(k)$ explain why H acts on $\operatorname{Tan}_{y}(Y)$ and prove $\operatorname{Tan}_{y}\left(Y^{H}\right)=\operatorname{Tan}_{y}(Y)^{H}$.
(iii) Assume H is a closed subgroup of a k-group G of finite type, $\mathfrak{g}:=\operatorname{Lie}(G)$ and $\mathfrak{h}:=\operatorname{Lie}(H)$. Prove $\operatorname{Tan}_{e}\left(Z_{G}(H)\right)=\mathfrak{g}^{H}$ via adjoint action. Also prove $\operatorname{Tan}_{e}\left(N_{G}(H)\right)=\cap_{h \in H(k)}\left(\operatorname{Ad}_{G}(h)-1\right)^{-1}(\mathfrak{h})$ when $k=k_{s}$.
5. A diagram $1 \rightarrow G^{\prime} \xrightarrow{j} G \xrightarrow{\pi} G^{\prime \prime} \rightarrow 1$ of finite type k-groups is exact if π is faithfully flat and $G^{\prime}=\operatorname{ker} \pi$.
(i) For any such diagram, prove $G^{\prime \prime}=G / G^{\prime}$ via π. Prove a diagram of k-tori $1 \rightarrow T^{\prime} \rightarrow T \rightarrow T^{\prime \prime} \rightarrow$ is exact if and only if $0 \rightarrow \mathrm{X}\left(T^{\prime \prime}\right) \rightarrow \mathrm{X}(T) \rightarrow \mathrm{X}\left(T^{\prime}\right) \rightarrow 0$ is exact (as Z-modules).
(ii) If G^{\prime} is finite then π is an isogeny. Prove that isogenies are finite flat with constant degree, and that $\pi_{n}: \mathrm{SL}_{n} \rightarrow \mathrm{PGL}_{n}$ is an isogeny of degree n. Compute Lie $\left(\pi_{n}\right)$; when is it surjective?
(iii) Prove that a short exact sequence of finite type k-groups induces a left-exact sequence of Lie algebras, short exact if G and G^{\prime} are smooth. (Smoothness of G can be dropped.)
(iv) Read \S A. 3 through Example A.3.4 in Pseudo-reductive groups, and prove $F_{X / k}: X \rightarrow X^{(p)}$ is finite flat of degree $p^{\operatorname{dim} X}$ for k-smooth X. Prove $\operatorname{Lie}\left(F_{G / k}\right)=0$, and compute $F_{G / k}$ for $\mathrm{GL}(V)$ and $\mathrm{O}(q)$.

Algebraic Groups I. Homework 8

1. Let A be a central simple algebra over a field k, T a k-torus in \underline{A}^{\times}.
(i) Adapt Exercise 5 in HW5 to make an étale commutative k-subalgebra $A_{T} \subseteq A$ such that $\left(A_{T}\right)_{k_{s}}$ is generated by $T\left(k_{s}\right)$, and establish a bijection between the sets of maximal k-tori in \underline{A}^{\times}and maximal étale commutative k-subalgebras of A. Deduce that $\operatorname{SL}(A)$ is k-anisotropic if and only if A is a division algebra.
(ii) For an étale commutative k-subalgebra $C \subseteq A$, prove $Z_{A}(C)$ is a semisimple k-algebra with center C.
(iv) If T is maximal as a k-split subtorus of \underline{A}^{\times}prove T is the k-group of units in A_{T} and that the (central!) simple factors B_{i} of $B_{T}:=Z_{A}\left(A_{T}\right)$ are division algebras.
(v) Fix $A \simeq \operatorname{End}_{D}(V)$ for a right module V over a central division algebra D, so V is a left A-module and $V=\prod V_{i}$ with nonzero left B_{i}-modules V_{i}. If T is maximal as a k-split torus in \underline{A}^{\times}, prove V_{i} has rank 1 over B_{i} and D, so $B_{i} \simeq D$. Using D-bases, deduce that all maximal k-split tori in \underline{A}^{\times}are $\underline{A}^{\times}(k)$-conjugate.
2. For a torus T over a local field k (allow \mathbf{R}, \mathbf{C}), prove T is k-anisotropic if and only if $T(k)$ is compact.
3. Let Y be a smooth separated k-scheme locally of finite type, and T a k-torus with a left action on Y. This exercise proves that Y^{T} is smooth.
(i) Reduce to the case $k=\bar{k}$. Fix a finite local k-algebra R with residue field k, and an ideal J in R with $J \mathfrak{m}_{R}=0$. Choose $\bar{y} \in Y^{T}(R / J)$, and for R-algebras A let $E(A)$ be the fiber of $Y(A) \rightarrow Y(A / J A)$ over $\bar{y}_{A / J A}$. Let $y_{0}=\bar{y} \bmod \mathfrak{m}_{R} \in Y^{T}(k)$ and $A_{0}=A / \mathfrak{m}_{R} A$. Prove $E(A) \neq \emptyset$ and make it a torsor over the A_{0}-module $F(A):=J A \otimes_{k} \operatorname{Tan}_{y_{0}}(Y)=J A \otimes_{A_{0}}\left(A_{0} \otimes_{k} \operatorname{Tan}_{y_{0}}(Y)\right)$ naturally in A (denoted $\left.v+y\right)$.
(ii) Define an A_{0}-linear $T\left(A_{0}\right)$-action on $F(A)$ (hence a T_{R}-action on F), and prove that $E(A)$ is $T(A)$ stable in $Y(A)$ with $t .(v+y)=t_{0} . v+t . y$ for $y \in E(A), t \in T(A), v \in F(A)$, and $t_{0}=t \bmod \mathfrak{m}_{R}$.
(iii) Choose $\xi \in E(R)$ and define a map of functors $h: T_{R} \rightarrow F$ by $t . \xi=h(t)+\xi$ for points t of T_{R}; check it is a 1-cocycle, and is a 1-coboundary if and only if $E^{T_{R}}(R) \neq \emptyset$. For $V_{0}=J \otimes_{k} \operatorname{Tan}_{y_{0}}(Y)$ use h to define a 1-cocycle $h_{0}: T \rightarrow \underline{V}_{0}$, and prove $t .(v, c):=\left(t . v+c h_{0}(t), c\right)$ is a k-linear representation of T on $V_{0} \oplus k$. Use a T-equivariant splitting (!) to prove h_{0} (and then h) is a 1-coboundary; deduce Y^{T} is smooth!
4. Let G be a smooth k-group of finite type, and T a k-torus equipped with a left action on G (an interesting case being T a k-subgroup acting by conjugation, in which case $\left.G^{T}=Z_{G}(T)\right)$.
(i) Use Exercise 3 to show $Z_{G}(T)$ is smooth, and by computing its tangent space at the identity prove for connected G that $T \subset Z_{G}$ if and only if T acts trivially on $\mathfrak{g}=\operatorname{Lie}(G)$.
(ii) Assume T is a k-subgroup of G acting by conjugation. Using Exercise 4(iii) of HW7 and the semisimplicity of the restriction to T of $\operatorname{Ad}_{G}: G \rightarrow \mathrm{GL}(\mathfrak{g})$, prove that $N_{G}(T)$ and $Z_{G}(T)$ have the same tangent space at the identity. Via (i), deduce that $Z_{G}(T)$ is an open subscheme of $N_{G}(T)$, so $N_{G}(T)$ is smooth and $N_{G}(T) / Z_{G}(T)$ is finite étale over k.
(iii) Assumptions as in (ii), the Weyl group $W=W(G, T)$ is $N_{G}(T) / Z_{G}(T)$. If T is k-split, use the equality $\operatorname{End}_{k}(T)=\operatorname{End}_{k_{s}}\left(T_{k_{s}}\right)$ to prove that $W(k)=W\left(k_{s}\right)$ and deduce that W is a constant k-group. But show $N_{G}(T)(k)$ does not map onto $W(k)$ if k is infinite and K is a separable quadratic extension of k such that $-1 \notin \mathrm{~N}_{K / k}\left(K^{\times}\right)$(e.g., k totally real and K a CM extension, or $k=\mathbf{Q}$ and $K=\mathbf{Q}(\sqrt{3})$) with $G=\mathrm{SL}(K) \simeq \mathrm{SL}_{2}$ and T the non-split maximal k-torus corresponding the norm-1 part of $K \subset \operatorname{End}_{k}(K)$.
(iv) Prove that $N_{G}(T)(k) \rightarrow W(k)=W(\bar{k})$ is surjective for the cases in HW6, Exercise 4(ii).
5. (i) For any field k, affine k-scheme X of finite type, and nonzero finite k-algebra k^{\prime}, define a natural map $j_{X, k^{\prime} / k}: X \rightarrow \operatorname{Res}_{k^{\prime} / k}\left(X_{k^{\prime}}\right)$ by $X(R) \rightarrow X\left(k^{\prime} \otimes_{k} R\right)=X_{k^{\prime}}\left(k^{\prime} \otimes_{k} R\right)$ for k-algebras R. Prove $j_{X, k^{\prime} / k}$ is a closed immersion and that its formation commutes with fiber products in X.
(ii) Let G be an affine k-group of finite type. Prove that $j_{G, k^{\prime} / k}$ is a k-homomorphism.
(iii) A vector group over k is a k-group G admitting an isomorphism $G \simeq \mathbf{G}_{a}^{n}$, and a linear structure on G is the resulting \mathbf{G}_{m}-action. A linear homomorphism $G^{\prime} \rightarrow G$ between vector groups equipped with linear structures is a k-homomorphism which respects the linear structures. For example, $(x, y) \mapsto\left(x, y+x^{p}\right)$ is a non-linear automorphism of \mathbf{G}_{a}^{2} (with its usual linear structure) when $\operatorname{char}(k)=p>0$.

For any k, prove \mathbf{G}_{a} admits a unique linear structure and its linear endomorphism ring is k. Giving \mathbf{G}_{a}^{n} and \mathbf{G}_{a}^{m} their usual linear structures, prove the linear k-homomorphisms $\mathbf{G}_{a}^{n} \rightarrow \mathbf{G}_{a}^{m}$ correspond to $\operatorname{Mat}_{m \times n}(k)$. Are there non-linear homomorphisms if $\operatorname{char}(k)=0$?

Algebraic Groups I. Homework 9

1. Read Appendix B in the book Pseudo-reductive groups to learn Tits' structure theory for smooth connected unipotent groups over arbitrary fields k with positive characteristic, and how k-tori act on such groups. Especially noteworthy are the results labelled B.1.13, B.2.7, B.3.4, and B.4.3.
2. Let U be a smooth connected commutative affine k-group, and assume U is p-torsion if $\operatorname{char}(k)=p>0$.
(i) If $\operatorname{char}(k)>0$ and U is k-split, use B.1.12 in Pseudo-reductive groups to prove U is a vector group.
(ii) Assume $\operatorname{char}(k)=0$. Prove that any short exact sequence $0 \rightarrow \mathbf{G}_{a} \rightarrow G \rightarrow \mathbf{G}_{a} \rightarrow 0$ is split. (Hint: $\log (u)$ is an "algebraic" function on the unipotent points of Mat ${ }_{n}$.) Deduce that $U \simeq \mathbf{G}_{a}^{N}$, and prove that any action on U by a k-split torus T respects this linear structure.
3. Let k^{\prime} / k be a degree- p purely inseparable extension of a field k of characteristic $p>0$.
(i) Prove that $U=\mathrm{R}_{k^{\prime} / k}\left(\mathbf{G}_{m}\right) / \mathbf{G}_{m}$ is smooth and connected of dimension $p-1$, and is p-torsion. Deduce it is unipotent.
(ii) In the Appendix "Quotient formalism" it is proved that any commutative extension of \mathbf{G}_{a} by \mathbf{G}_{m} over any field is uniquely split over that field. Prove that $\mathrm{R}_{k^{\prime} / k}\left(\mathbf{G}_{m}\right)\left(k_{s}\right)[p]=1$, and deduce that U in (i) does not contain \mathbf{G}_{a} as a k-subgroup! (For a salvage, see Lemma B.1.10 in Pseudo-reductive groups: a p-torsion smooth connected commutative affine group over any field of characteristic $p>0$ admits an étale isogeny onto a vector group.)
4. Let G be a smooth group of finite type over a field k, and N a commutative normal k-subgroup scheme.
(i) Prove that the left G-action on N via conjugation factors uniquely through an action of G / N on N, and if N is central in G then prove that the action of G on itself via conjugation uniquely factors through an action of G / N on G. Describe this explicitly for $G=\mathrm{SL}_{n}$ and $N=\mu_{n}$ over any field k, accounting for the fact that $\mathrm{SL}_{n}(k) \rightarrow \mathrm{PGL}_{n}(k)$ is generally not surjective.
(ii) Prove the commutator map $G \times G \rightarrow G$ uniquely factors through a k-morphism $\left(G / Z_{G}\right) \times\left(G / Z_{G}\right) \rightarrow$ $\mathscr{D}(G)$.
5. Let B be a smooth connected solvable group over a field k.
(i) If $B=\mathbf{G}_{m} \rtimes \mathbf{G}_{a}$ with the standard semi-direct product structure, prove that $Z_{B}(t, 0)$ is the left factor for any $t \in k^{\times}-\{1\}$.
(ii) Deduce by inductive arguments resting on (i) that if $k=\bar{k}$ and $S \subset B(k)$ is a commutative subgroup of semisimple elements then $S \subset T(k)$ for some maximal torus $T \subset B$.
(iii) Assume $\operatorname{char}(k) \neq 2$ with $k=\bar{k}$, and let $G=\mathrm{SO}_{n}$ with $n \geq 3$. Let $\mu \simeq \mu_{2}^{n-1}$ be the "diagonal" k subgroup $\left\{\left(\zeta_{i}\right) \in \mu_{2}^{n} \mid \prod \zeta_{i}=1\right\}$. Prove that the disconnected μ is maximal as a solvable smooth k-subgroup of G and is not contained in any maximal k-torus of G (hint: it has too much 2-torsion), so in particular is not contained in any Borel k-subgroup (by (ii))!
6. Let G be a quasi-split smooth connected affine k-group, and $B \subset G$ a Borel k-subgroup. Let T be a maximal k-torus in B.
(i) Using conjugacy of maximal tori in $G_{\bar{k}}$, prove $g \mapsto g B g^{-1}$ is a bijection from $N_{G}(T)(\bar{k}) / Z_{G}(T)(\bar{k})$ onto the set of Borel \bar{k}-subgroups containing $T_{\bar{k}}$. In particular, this set is finite.
(ii) Using HW8 Exercise 4, prove that $N_{G}(T)\left(k_{s}\right) / Z_{G}(T)\left(k_{s}\right) \rightarrow N_{G}(\bar{k}) / Z_{G}(T)(\bar{k})$ is bijective, and deduce that every Borel subgroup of $G_{\bar{k}}$ containing $T_{\bar{k}}$ is defined over k_{s} !
(iii) Assume that T is k-split and $Z_{G}(T)=T$. Using Hilbert 90 and HW8 Exercise 4, prove that $N_{G}(T)(k) / T(k) \rightarrow N_{G}(T)\left(k_{s}\right) / Z_{G}(T)\left(k_{s}\right)$ is bijective. Deduce that every Borel subgroup of $G_{\bar{k}}$ containing $T_{\bar{k}}$ is defined over $k!$ In each of the classical cases $\left(\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{PGL}_{n}, \mathrm{Sp}_{2 n}\right.$, and $\left.\mathrm{SO}_{n}\right)$, find all B containing the k-split maximal "diagonal" T. How many parabolic k-subgroups can you find containing one such B ? (At least for $\mathrm{GL}_{n}, \mathrm{SL}_{n}$, and PGL_{n}, prove you have found all such parabolics.)
(iv) Prove that each maximal smooth unipotent subgroup of $G_{\bar{k}}$ admits a conjugate contained in $B_{\bar{k}}$, and deduce that if $B \cap B^{\prime}=T$ for another Borel B^{\prime} containing T then G is reductive. Use this with (iii) to prove reductivity for $\mathrm{GL}_{n}(n \geq 1), \mathrm{SL}_{n}(n \geq 2), \mathrm{PGL}_{n}(n \geq 2), \mathrm{Sp}_{2 n}(n \geq 1)$, and $\mathrm{SO}_{n}(n \geq 2)$.

Algebraic Groups I. Homework 10

1. Let G be a smooth connected affine group over a field k.
(i) For a maximal k-torus T in G and a smooth connected k-subgroup N in G that is normalized by T, prove that $T \cap N$ is a maximal k-torus in N (e.g., smooth and connected!). Show by example that $S \cap N$ can be disconnected for a non-maximal k-torus S. Hint: first analyze $Z_{G}(T) \cap N$ using $T \ltimes N$ to reduce to the case when T is central in G, and then pass to G / T.
(ii) Let H be a smooth connected normal k-subgroup of G, and P a parabolic k-subgroup. If $k=\bar{k}$ then prove $(P \cap H)_{\text {red }}^{0}$ is a parabolic k-subgroup of H, and use Chevalley's theorem on parabolics being their own normalizers on geometric points (applied to H) to prove $P \cap H$ is connected (hint: work over \bar{k}).
(iii) Granting $Q=N_{H}(Q)$ scheme-theoretically for parabolic Q in H (Prop. 3.5.7 in Pseudo-reductive groups, rests on structure theory of reductive groups), prove $P \cap H$ in (ii) is smooth. (Hint: prove $(P \cap H)_{\text {red }}^{0}$ is normal in P, hence in $P \cap H$!) In particular, $B \cap H$ is a Borel k-subgroup of H for all Borels B of G.
2. Let k be a field, and $G \in\left\{\mathrm{SL}_{2}, \mathrm{PGL}_{2}\right\}$.
(i) Define a unique PGL_{2}-action on SL_{2} lifting conjugation. Prove a k-automorphism of G preserving the standard Borel k-subgroup and the diagonal k-torus is induced by the action of a diagonal k-point of PGL_{2}.
(ii) Prove that the homomorphism $\mathrm{PGL}_{2}(k) \rightarrow \operatorname{Aut}_{k}(G)$ is an isomorphism. In particular, every k automorphism of PGL_{2} is inner. Show that SL_{2} admits non-inner k-automorphisms if and only if $k^{\times} \neq\left(k^{\times}\right)^{2}$.
3. Let $\lambda: \mathbf{G}_{m} \rightarrow G$ be a 1-parameter k-subgroup of a smooth affine k-group G. Define $\mu: U_{G}\left(\lambda^{-1}\right) \times P_{G}(\lambda) \rightarrow$ G to be multiplication. We seek to prove it is an open immersion. Let $\mathfrak{g}=\operatorname{Lie}(G)$.
(i) For $n \in \mathbf{Z}$ define \mathfrak{g}_{n} to be the n-weight space for λ (i.e., $\operatorname{ad}(\lambda(t)) \cdot X=t^{n} X$). Define $\mathfrak{g}_{\lambda \geq 0}=\oplus_{n \geq 0} \mathfrak{g}_{n}$, and similarly for $\mathfrak{g}_{\lambda>0}$. Prove $\operatorname{Lie}\left(P_{G}(\lambda)\right)=\mathfrak{g}_{\lambda \geq 0}, \operatorname{Lie}\left(U_{G}(\lambda)\right)=\mathfrak{g}_{\lambda>0}$, and $\operatorname{Tan}(e, e)(\mu)$ is an isomorphism.
(ii) If $G=\mathrm{GL}(V)$ and the \mathbf{G}_{m}-action on V has weights $e_{1}>\cdots>e_{m}$, justify the block-matrix descriptions of $U_{G}\left(\lambda^{ \pm 1}\right), Z_{G}(\lambda)$, and $P_{G}(\lambda)$. Deduce $U_{G}\left(\lambda^{-1}\right)$ and $P_{G}(\lambda)$ are smooth and have trivial intersection.
(iii) Working over \bar{k} and using suitable left and right translations by geometric points, prove that $\mathrm{d} \mu(\xi)$ is an isomorphism for all \bar{k}-points ξ of $U_{G}\left(\lambda^{-1}\right) \times P_{G}(\lambda)$. Deduce that if $U_{G}\left(\lambda^{-1}\right)$ and $P_{G}(\lambda)$ are smooth (OK for $\operatorname{GL}(V)$ by (ii)) then μ induces an isomorphism between complete local rings at all \bar{k}-points, and conclude that μ is flat and quasi-finite. Hence, μ has open image in such cases.
(iv) Using valuative criterion for properness, prove a flat quasi-finite separated map $f: X \rightarrow Y$ between noetherian schemes is proper if all fibers X_{y} have the same rank. (Hint: base change to Y the spectrum of a dvr.) By Zariski's Main Theorem, proper quasi-finite maps are finite. Deduce μ is an open immersion if $U_{G}\left(\lambda^{-1}\right)$ and $P_{G}(\lambda)$ are smooth with trivial intersection. (Hint: finite flat of fiber-degree 1 is isomorphism.)

This settles GL (V); the Appendix "Dynamic approach to algebraic groups" then yields the general case!
4. Let $\lambda: \mathbf{G}_{m} \rightarrow G$ be a 1-parameter k-subgroup of a smooth affine k-group. For any integer $n \geq 1$, prove that $P_{G}\left(\lambda^{n}\right)=P_{G}(\lambda), U_{G}\left(\lambda^{n}\right)=U_{G}(\lambda)$, and $Z_{G}\left(\lambda^{n}\right)=Z_{G}(\lambda)$.
5 . Let G be a reductive group over a field k, and N a smooth closed normal k-subgroup. Prove N is reductive. In particular, $\mathscr{D}(G)$ is reductive.
6. Prove that $\mu_{n}[d]=\mu_{d}$ for $d \mid n$, and that $\mathbf{Z} / n \mathbf{Z} \rightarrow \operatorname{End}\left(\mu_{n}\right)$ is an isomorphism.
7. Prove that a rational homomorphism (defined in evident manner: respecting multiplication as rational map) between smooth connected groups over a field k extends uniquely to a k-homomorphism. (Hint: pass to the case $k=k_{s}$ by Galois descent, and then use suitable k-point translations.)
8. (optional) Let G be a smooth connected affine group over an algebraically closed field k, char $(k)=0$.
(i) If all finite-dimensional linear representations of G are completely reducible, then prove that G is reductive. (Hint: use Lie-Kolchin, and behavior of semisimplicity under restriction to a normal subgroup. This will not use characteristic 0 .)
(ii) Conversely, assume that G is reductive. The structure theory of reductive groups implies that $\operatorname{Lie}(\mathscr{D} G)$ is a semisimple Lie algebra, and a subspace of a finite-dimensional linear representation space for G is G stable if and only if it is \mathfrak{g}-stable under the induced action $\mathfrak{g} \rightarrow \operatorname{End}(V)$ since $\operatorname{char}(k)=0$. Prove that all finite-dimensional linear representations of G are completely reducible.

