ALGEBRAIC GROUPS I. UNIPOTENT RADICALS AND REDUCTIVITY

In class, we have proved the important fact that over any field k, a non-solvable connected
reductive group containing a 1-dimensional split maximal k-torus is k-isomorphic to SLy or PGLs.
That proof relied on knowing that maximal tori remain maximal after a ground field extension to
k, and so relies on Grothendieck’s theorem. But for algebraically closed fields there is no content
to Grothendieck’s theorem, so for k = k this rank-1 classification is simpler to prove.

The aim of this handout is to use the rank-1 classification (usually just over algebraically closed
fields) to prove some important results on the behavior of unipotent radicals and the property of
reductivity with respect to two ubiquitous operations on smooth connected affine groups over an
arbitrary field k: the formation of quotient k-groups (modulo normal k-subgroup schemes) and the
formation of centralizers of k-tori (which we have seen are always smooth and connected).

Recall that it was proved in class by elementary means that reductivity is inherited by smooth
connected normal k-subgroups. More specifically, we proved that if N C G is a smooth connected
normal k-subgroup then %, (N;) € Z.(Gy) (so reductivity of G implies that of N). In fact, the
inclusion %, (Ni.) € N;:N%,(G7) of subgroup schemes of G (using scheme-theoretic intersection) is
always an equality, but the proof rests on some non-trivial structural properties of reductive groups
which have not yet been proved. (A proof is given in Proposition A.4.8 of “Pseudo-reductive
groups”, working over k there.) The main input is the non-obvious fact that the scheme-theoretic
center of a connected reductive group is a subgroup scheme of a torus (see Corollary 2.2 below), and
so has no nontrivial subgroup schemes which can arise as subgroup schemes of smooth unipotent
groups (HW5, Exercise 1).

Notation. In what follows, G always denotes a smooth connected affine group over an arbitrary
field k, unless we indicate otherwise. Also, following tradition, we often denote characters and
cocharacters of tori in additive notation, for instance writing —\ rather than A~! for the composition
of a homomorphism A : G,,, — T with inversion and likewise writing 0 to denote the trivial character
of T'. The reason for doing this is that it is convenient to work with the Q-vector space X(T")q and
to view the collections of characters and cocharacters as Z-lattices.

1. PRELIMINARY RESULTS
Our first lemma will be surprisingly powerful (and is somewhat tricky to prove):

Lemma 1.1. Assume k = k, and let S be a k-torus in G. The Borel subgroups of Zq(S) are
precisely the subgroups Zp(S) = B N Zg(S) (scheme-theoretic intersection, as always) for Borel
subgroups B of G which contain S.

Proof. The smooth connected affine group Z¢(S) contains a Borel subgroup B’, and S must lie in
B’. Indeed, S lies in some Borel subgroup of Z¢(S), all Borel subgroups in a smooth connected
affine group over k = k are conjugate, and S is central in Zg(S), so indeed S C B’. In turn, B’
is contained in a Borel subgroup B of G (via the characterization of Borel subgroups as maximal
smooth connected solvable subgroups, rather than the “minimal parabolic” viewpoint). But Zg(.5)
is a smooth connected subgroup of B, so it is solvable, yet it lies in Zg(S). The inclusion B’ C
Zp(S) = BN Zg(S) is therefore an equality by maximality of B’ in Z(S). Thus, we have found
a Borel subgroup B in G containing S such that Zp(S) is equal to an arbitrarily chosen Borel
subgroup B’ of Z(S). This proves that all Borel subgroups of Z;(S) have the asserted form.
Conversely, we wish to show that if B is a Borel subgroup of G containing S then the smooth
connected solvable subgroup Z¢(S)N B = Zp(S) is a Borel subgroup of Zg(.S). It suffices to prove
that Z¢(S)/Zp(S) is complete. Since S C B, the S-conjugation on G preserves B and so induces
an action on the complete coset space G/B. By HWS, Exercise 3, the scheme-theoretic fixed locus
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(G/B)® is smooth. But this fixed locus is obviously closed in G/B, so it is complete. There is
an evident map f : Zg(S)/Zp(S) — (G/B)® which factors through the (irreducible) connected
component of the identity of the target (since Zg(S) is connected), and we will show that it is an
isomorphism onto this component. That will provide the desired completeness for Z(S)/Zp(S).

The map induced by f on tangent spaces at the identity is the natural map g°/b% — (g/b)°
(see HW7, Exercise 4(ii)), and this is an isomorphism due to the complete reducibility of linear
representations of tori (such as S). Hence, f is étale at the identity (since it is a map between
smooth k-schemes, so the étale property near a k-point is equivalent to the isomorphism condition
on tangent spaces there). But for any g € Zg(S)(k) = Zg)(S), f intertwines left multiplication
by g on its source and target, so f is étale at all k-points and thus is étale. In particular, its image
in the identity component of (G/B)® is open and f is flat. But f is clearly injective on geometric
points, so the map f between its source and open image is flat with all fiber-ranks of degree exactly
1. Hence, by HW10, Exercise 3(iv), f is finite étale between its source and image, so finite flat of
degree 1. In other words, f is an isomorphism onto its image, which is to say that f is an open
immersion. The problem is to prove that f has image which fills up the entire identity component
of (G/B)®. We do this following the idea of the proof of Proposition 11.15 in Borel’s book.

Consider the smooth surjective map 7 : G — G/B whose fibers are connected. The preimage
Y := 771((G/B)®) is therefore connected and maps onto (G/B)%. It suffices to prove that for all
y € Y (k) there exists b € B(k) such that yb~! € Z5(S)(k). The definition of Y implies sys~! € yB
for all s € S(k), so y~lsy € Bs = B;i.e., y~ 'Sy C B. That is, the action of the variety Y on G via
(y,9) — vy~ tgy carries S into B. Thus, for the torus T := B/%,(B) we get a map Y — Hom(S, T)
via

y — (s =y 'sy mod Z,(B)).

This map carries 1 € Y to the natural map j : S — 7. Since Hom(S,T') is an étale k-scheme and
Y is connected, it follows that Y is carried to the point {5} (“rigidity of tori”). In other words,
y~ sy = s mod Z,(B) for all s,y, so y~ 'Sy C S x %Z,(B).

The group S x %,,(B) is smooth and connected (even solvable), with S visibly a maximal torus,
so all tori in this group of the same dimension as S are conjugate to S by a point of this group.
Thus, y~ 'Sy = g~19¢ for some g € S x %, (B). It is harmless to scale g on the left by points in S,
so we can assume g = b € %,(B). Hence, yb~! € Ng(S). But

y lsy =s=b"tsbmod Z,(B),

so the yb~!-conjugation on S intertwines with the identity map on S via the natural map j : S —
T := B/%.(B). Since ker j = S N %,(B) = 1, it follows that yb~! € Z5(S), as desired. [ ]

Remark 1.2. The method of proof shows that if H is a (not necessarily normal or connected) smooth
closed subgroup of G normalized by a torus S then Zg(S)/Zp(S) is the identity component of
(G/H)®.

For a smooth connected affine group G over an algebraically closed field, since %, (G) is normal
and solvable in G it is contained in every Borel subgroup B of G. (Indeed, it is contained in some
Borel subgroup, hence in all by conjugacy and normality arguments.) Hence, %, (G) is contained
in #,(B) for every B, since such B are solvable and the unipotent radical is functorial for solvable
smooth k-groups. The following result goes much deeper, and the proof will take a long time.

Theorem 1.3. Let T be a mazximal torus in a smooth connected affine group G over an algebraically
closed field k. As B wvaries through the Borel subgroups which contain T, the resulting smooth
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coincides with %,(G). In particular, if G is reductive then 1(T) = 1.

This result is quite striking, since a-priori it isn’t evident that I(7') is even normal in G, let alone
equal to %Z,(G). But there is a reason to expect this result: experience with many examples in
the reductive case (for which the assertion is that I(7') = 1). In fact, once the structure theory of
connected reductive groups is set up (in terms of root systems and root groups), it is easy to show
that for any single Borel subgroup B containing a maximal torus 7" in a connected reductive group
G, there is a unique B’ containing T" such that %, (B) N %, (B’) = 1 scheme-theoretically (one calls
B’ the “opposite” Borel subgroup to B relative to T'; for G = GL,, and the diagonal T' and upper-
triangular B, the lower-triangular Borel is B’). Thus, for a general smooth connected affine group
G over k = k, we may apply this to G/%,(G) to get a pair of Borel subgroups B and B’ containing
T such that Z,(B)N%.(B') = %,(G) scheme-theoretically. This is a much stronger assertion than
that I(T') = Z.(G), but it rests upon the finer structure theory of connected reductive groups not
yet proved.

Proof. The torus T maps isomorphically onto a torus in G /%, (G), and its image must be a maximal
torus for dimension reasons (as the preimage in G of any torus in G/%,(G) is clearly smooth
connected and solvable). Thus, it is harmless to replace G with G/%,(G) to reduce to the case
when G is reductive. We aim to prove I(T') = 1.

If we can prove that I(T") is normal in G then it must lie in Z,(G) = 1, so we would be done.
Such normality is not at all obvious, since G(k)-conjugations move T all over the place! The crux of
the matter is to prove that G is generated by some finite collection of smooth connected subgroups
that each normalize I(T) (so G does as well). We will achieve this by using the classification
of connected reductive groups with a 1-dimensional maximal torus over algebraically closed fields:
such groups are either SLg or PGLjg, for which we can do some concrete calculations. (The intuition,
for those familiar with the structure theory of complex semisimple Lie algebras, is that already for
a single B and its “opposite” Borel with respect to T we should get a trivial intersection. The
problem is that this intuition rests on the structure theory for such Lie algebras in terms of root
systems, and the analogous structure theory for connected reductive groups rests on what we are
presently trying to prove!)

Let ® = ®(G,T) denote the set of nontrivial weights for the adjoint action of 7" on g = Lie(G).
We may (and do) assume @ is non-empty. Indeed, otherwise Zg(T') has Lie algebra g’ = g and
thus Zg(T) = G. But any smooth connected affine group over k = k with a central maximal torus
must be solvable (the quotient by the maximal torus must be unipotent), and hence by reductivity
we’d have G = T, leaving nothing to do.

For each a € ®, T, := (ker a)?ed is a codimension-1 subtorus in 7" and G, := Zg(T,) is a smooth
connected subgroup of G containing T with g, := Lie(G,) = g’=. In other words, g, is the span of
the weight spaces in g for those T-weights which kill T}, or in other words are rational multiples of
a in X(T')q (as X(T'/T,)q is 1-dimensional and contains a # 0). In particular, the trivial weight
space g = Lie(Zg(T)) is contained in every g,, as is the a-weight space, so g is spanned by the
ga’s due to the complete reducibility of the T-action on g. Thus, G is generated by the subgroups
G- It therefore suffices to prove that each G, normalizes I(T).

Note that by its definition, each G, does contain Zg(T). In particular, T is a maximal torus
in every G,. We claim that each G, is generated by its Borel subgroups that contain 7. If G, is
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solvable (which is actually impossible, but we do not know that yet) then it is its own Borel subgroup
and there is nothing to do. In the non-solvable case, passing to the non-solvable connected reductive
quotient Gy /%, (G,) in which T' maps isomorphically onto a maximal torus allows us to apply:

Lemma 1.4. Let H be a non-solvable connected reductive group over an algebraically closed field,
and assume H contains a mazximal torus S such that all nontrivial S-weights occurring on b are
Q-multiples of each other.

The quotient of H modulo its maximal central torus is either SLy or PGLg, there are exactly two
Borel subgroups of H that contain S, and these Borel subgroups generate H.

Note that in the statement of the lemma we do not rule out a priori the possibility that the set
of non-trivial S-weights on § is empty.

Proof. Consider the maximal smooth connected solvable normal subgroup R in H. This is reductive
(since H is), so it is a torus. Being a normal torus in the connected H, it must be central. Thus,
it is contained in S (as well as in every Borel) and is killed by all S-weights on b, so replacing
H and S with H/R and S/R respectively is harmless. Thus, we may assume that there is no
nontrivial central torus in H. We will next prove that dim.S = 1 (so we can apply the classification
of non-solvable connected reductive groups with a 1-dimensional maximal torus!).

The set ®(H,S) of nontrivial S-weights on h must be non-empty. Indeed, otherwise the Lie
algebra h° of the smooth connected subgroup Zy(S) fills up all of b, forcing Zy(S) = H for
dimension and connectedness reasons. But then S is central, so S = 1. By maximality of S
as a torus in H, it would then follow that H is unipotent, contradicting its non-solvability. By
hypothesis, the elements of ®(H,.S) span a single line in X(5)q, so for any a € ®(H,S) it follows
that S’ := (kera)®, is a codimension-1 torus in S on which all elements of ®(H,S) act trivially.
Hence, Z(S") = H by the same Lie algebra considerations as just used, so S’ = 1 since H has no
nontrivial central torus. This proves dim S = 1.

It follows from our classification of non-solvable connected reductive groups with a 1-dimensional
maximal torus that necessarily H is isomorphic to either SLs or PGLo. By conjugacy of maximal
tori, we can choose this isomorphism so that S goes over to the diagonal torus. The two standard
Borel subgroups containing S in each case then generate H: for SLs we know that even their
unipotent radicals do the job, and so the same holds for the quotient PGLsy.

Finally, we prove that these two Borel subgroups are the only ones containing S. For any smooth
connected affine group G over an algebraically closed field £ and any maximal torus 7" in G, any
two Borel subgroups B and B’ in G that contain T are relating through conjugation by an element
in Ng(T). (Indeed, gBg~—! = B’ for some g € G, so gT'g~! and T are maximal torus in B’. Thus,
for some b € B’ we have VgTg~ 0" =T, so Vg € Ng(T) does the job. Also see HW9 Exercise
6(i).) It follows that Ng(T')/T acts transitively on the set of Borel subgroups containing 7". For the
groups SLy and PGLy, the diagonal torus has index 2 in its normalizer by inspection. (The case of
PGLy can be reduced to SLy since the kernel of SLy — PGLs is contained in the diagonal torus.)
Hence, the two evident Borel subgroups containing the diagonal torus are the only ones. |

Returning to our setup of interest, we conclude that G is generated by the Borel subgroups of
the G, = Zg(T,) which contain T', so it suffices to prove that I(7") is normalized by each such
Borel subgroup. According to Lemma 1.1, the Borel subgroups of G, are precisely Zp (1) for
Borel subgroups B of G containing Ty, and such a subgroup contains 7" if and only if B does (as
T obviously centralizes T,!). Hence, G is generated by its subgroups Zp(7,) as B varies through
the Borel subgroups containing 7. For such B, the smooth connected solvable group Zp (1) is
T x %, (B)"a, so its unipotent radical is %, (B)"a.
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If G4 is non-solvable then the maximal central torus in G, is T, (as this has codimension 1
in T and certainly 7" cannot be central as otherwise G,/7T would be unipotent, forcing G, to be
solvable). The visibly reductive quotient G, /(T, X Z,(G,)) has T/T, as a 1-dimensional maximal
torus, so it is isomorphic to SLy or PGLy with T'/T,, carried to the diagonal torus. In each of SLy
and PGLy there are exactly two Borel subgroups containing the diagonal torus (by Lemma 1.4)
Moreover, each such Borel subgroup supports (in the Lie algebra of its unipotent radical) exactly
one of two nontrivial T-weights +q, - a for some rational g, > 0, both signs actually occur, and the
corresponding weight spaces are 1-dimensional. Since T}, (and hence G,) is insensitive to replacing
a with a nonzero rational multiple (among the T-weights on g), it follows that each of +¢, - a is
insensitive to replacing a with a positive rational multiple (among the T-weights on g).

If some G, is equal to G then T, is central in G and Z%,(G,) = 1, so G/T, is either SLs or
PGLs, making it evident by inspection that G has exactly two Borel subgroups containing 7" and
that their intersection is trivial. Hence, we may assume that all G, are proper subgroups of G,
so by induction on dim G each unipotent radical %Z,(G,) is the reduced identity component of
the intersection of the %, (B)”* for B containing 7. Since torus centralizers are compatible with
smoothness and with identity components (in the sense that they preserve connectedness), it follows
that 2, (G,) = I(T)= for every a.

Under surjective homomorphisms between smooth connected affine groups over an algebraically
closed field, Borel subgroups map onto Borel subgroups (proved in class) and hence likewise for
their unipotent radicals (due to the structure of smooth connected solvable groups over k = k).
Thus, the image of each %Z,(B)T* in G,/(T, x %.(G,)) is trivial when G, is solvable (in which
case %y (B)"e clearly normalizes I(T)) and is one of two 1-dimensional possibilities when G, is
non-solvable. It follows that if G, is non-solvable then %, (B)%« contains %,(G,) = I(T)'* as a
normal subgroup with codimension 1 and quotient whose Lie algebra supports a T-weight +q, - a
that is insensitive to replacing a with a positive rational multiple (among the T-weights on g).
Moreover, this 1-dimensional quotient as a T-normalized subvariety of the coset space G/I(T)%e
depends only on the sign of the multiplier against a. Among all nonzero rational multiples of a
which arise as T-weights on the tangent space at the identity for the coset space G/I(T) it follows
from Remark 1.2 (with S = T, and H = I(T)) that ezactly two have weight space in g not entirely
contained in Lie(I(T)), and that these two weights are negatives of each other and have weight
spaces meeting Lie(I(T")) with codimension 1.

In what follows we only need to consider a such that G, is non-solvable and (by replacing a with
a uniquely determined positive rational multiple if necessary) the a-weight space is not entirely
contained in Lie(/(T)). The only other nonzero rational multiple of a which occurs in this way
is —a (and it does occur). Define I,(T') to be the identity component of the underlying reduced
scheme of the intersection of those %, (B) whose Lie algebra supports a as a weight outside of
Lie(I(T)). Clearly I(T) C I,(T), and each %,(B)*= is contained in exactly one of I+,(T). Hence,
if I(T) is normal in each I,(7T) then it is normalized by every %,(B)%«, and we would be done.
It therefore suffices to prove that each containment I(7) C Ii,(7T) between smooth connected
unipotent subgroups is a normal subgroup. By renaming —a as a if necessary (as we may do), we
can focus on the containment I(T) C I,(T).

The preceding considerations yield the following very important consequence (especially after we
finish the proof of Theorem 1.3, so I(T) = 1 in the reductive case):

Lemma 1.5. The finite collection V(G,T) C X(T') of non-trivial T-weights on g whose weight
spaces are not contained in Lie(I(T')) is non-empty and stable under negation, with each such

weight having a 1-dimensional weight space in the tangent space at the identity on the coset space
G/I(T). Moreover, for any a € V(G,T), the set of Q-multiples of a in V(G,T) is {£a}.
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Proof. For any such weight a, apply the preceding arguments and Remark 1.2 with S = T, and
H=1T). |

The normality of I(T") in 1,(T') is reduced to a dimension property, due to:

Lemma 1.6. For any inclusion U < U’ between smooth connected unipotent groups over a field,
if U # U’ then Ny/(U) is strictly larger than U. In particular, if dim(U’/U) =1 then U is normal
in U’

Proof. We may assume the ground field is algebraically closed. The descending central series of U’
(or consideration of upper-triangular unipotent matrices) forces U’ to contain a central G, (here
we use that the ground field is algebraically closed). If this is not contained in U then we win.
Otherwise we can replace U and U’ with their quotients modulo this common central subgroup and
proceed by induction on dim U’. [

It now suffices to prove that dim I,(7")/I(T) < 1. The coset space 1,(T)/I(T) has a natural
T-action (as I,(T) and I(T') are normalized by T'), so its tangent space at the identity point is a
direct sum of weight spaces for some T-weights; by the way we have chosen a, one such weight is
a itself. The inclusion of I,(T)/I(T) into G/I(T) implies that all nontrivial T-weights b occurring
on I,(T)/I(T) have exactly a 1-dimensional weight space, and the only other nonzero rational
multiple of b which can occur is —b, as we see by applying Remark 1.2 with S =T, and H = I(T)
and inspecting the Borel subgroups of SLs and PGL2 containing the diagonal torus and having
a specified nonzero weight on the Lie algebra of its 1-dimensional unipotent radical. Once again
using Remark 1.2 (with the torus 7,), the weights 0 and —a do not occur on 1,(T")/I(T). Thus,
we just have to rule out the occurrence of weights linearly independent from a.

Fix a choice of such a hypothetical extra weight b, so Gy is non-solvable (as otherwise %, (B)" =
Ru(Gyp)Te = I[(T)T» C I(T) for all Borel subgroups B of G containing 7', contradicting that some
,,(B) has Lie algebra supporting the T-weight b outside of Lie(I(7"))). We will deduce a contradic-
tion. Since b is linearly independent from a in X(T")q, T} and T, are distinct codimension-1 subtori
in 7. By the choice of b, for every Borel subgroup B in G containing 7" such that Lie(%,(B))
supports the T-weight a, this Lie algebra also supports the T-weight b outside of Lie(I(7")). In
particular, it cannot support the T-weight —b (since T, = T and we have analyzed %, (B)*). In
other words, if B is a Borel subgroup of G containing 7' such that %,(B)’= has a as its unique
weight modulo I(T) then %, (B)™ has b (and not —b) as its unique weight modulo I(7T). In par-
ticular, for such B we see that %, (B)T /I(T)™ is uniquely determined inside of Gy/(Ty, - Zu(Gp))
(= SLy or PGLy). Hence, %,(B)™ is also uniquely determined upon specifying that %, (B)e lifts
the Borel subgroup B, in G,/(T, - %.(G,)) whose Lie algebra supports the T'/T,-weight a (rather
than —a), and therefore BT> = T' x %, (B)™" is uniquely determined upon specifying B”a lifts B,.

Recall that T, uniquely determines the pair {a, —a}. Call a codimension-1 torus S in T' singular if
there is a T-weight on g which kills S and whose weight space is not entirely contained in Lie(I(7)).
To get a contradiction, we will apply the following lemma.

Lemma 1.7. If S and S’ are distinct singular tori in T then there exist Borel subgroups B, B' in
G containing T such that B'® = BS and B'"®" # B'®".

Proof. We bring in the “dynamic approach” to algebraic groups (from an earlier handout, and
discussion in class). Call a cocharacter X : G, — T regular if is not killed by any of the weights in
®(G,T). This amounts to requiring that A € X, (T') = X(T')" avoids finitely many “hyperplanes”, so
there are many such A. In particular, for all a € ®(G,T) the pairing (a,\) = ao X € End(G,,) = Z
is nonzero. Attached to any regular A\ (or even any 1-parameter subgroup of G at all), we obtained
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smooth connected unipotent subgroups Ug(A) and Ug(—\), as well as a smooth connected subgroup
Za(N) = Za(—A), such that all are normalized by T and their Lie algebras are the respective weight
spaces in g for the weights a € ®(G,T') U {0} satisfying (a, A\) > 0, (a,A) < 0, and (a,\) = 0. The
final case occurs precisely for a = 0 since A is regular, so Zg(\) and Zg(T') have the same Lie algebra
and hence the containment Zg(T) C Zg(A) (which follows from the functorial characterization of
Zc(\) because A is valued in T') is forced to be an equality due to connected and dimension reasons.
Hence, we have an open immersion

Uc;()\) X Z(;(T) X UG'(—)\> — G

vai multiplication (see §1 of the handout “Dynamic approach to algebraic groups”, and HW10
Exercise 3), and Zg(T) = Zg(\) = Zg(—\) normalizes both Ug () and Ug(—\).

By Lemma 1.5, the nontrivial T-weights on g whose weight spaces are not entirely in Lie(I(T))
occur in opposite pairs +a, and no two such can arise in the Lie algebra of a common Borel subgroup
B. Indeed, if they did then the image of Z,(B)"* in G,/(T, - %.(G,)) would be a Borel containing
T /T, and supporting a pair of opposite T'/T,-weights in its Lie algebra, an absurdity. Hence, if B
is a Borel subgroup containing the smooth connected solvable subgroup

BO\) =T x Ug(\)

(so B=T xU for U = %,(B) containing Ug(A)) then any T-weight on Ug(—\) occurring on
Lie(B) must have its entire weight space contained in Lie(I(7")). But I(T') C B by definition of
I(T), so Lie(I(T")) maps onto the tangent space of B/B(\) at the identity. Thus, the multiplication
map B(A\) x I(T) — B is surjective on tangent spaces at the identity points, so B = (B(X), I(T)).

Turning this argument around, we have shown that for any regular A\, (B(\),I(T)) is a Borel
subgroup of G containing 7" and the multiplication map B(X) x I(T') — (B(X),I(T)) is smooth
at the identity point. Since Ng(T') acts transitively on the set of Borel subgroups containing T
(reviewed near the end of the proof of Lemma 1.4) and it visibly normalizes I(T") and permutes the
subgroups B()), we conclude that the Borel subgroups of G containing T" are precisely the subgroups
(B(N),I(T)), and that such a subgroup has Lie algebra spanned by Lie(B(A)) and Lie(I1(T)).

For any singular torus S = T, (with the label a chosen as above, uniquely up to sign), it
follows that for B = (B(\), I(T)) the Lie algebra of B is spanned by the Lie algebras of B(\)°
and I(T)® (since formation of torus centralizer commutes with the formation of Lie algebras for
smooth connected affine groups). Hence, the Borel subgroup B® in G° = G, is generated by
B(\)® =T x Ug(N)® and I(T), but I(T)% = I(T)T = %,(G,,) is entirely determined by T, = S:
it has nothing to do with the choice of B! Of course, the image of Ug(\)® in G¥/(S x %,(G?)) is
the unipotent radical of one of the two Borel subgroups containing 7'/S, and if we replace A with
— then we get the “opposite” one (and not the trivial group, since U(;(—/\)S supports the entire
—a-weight space in g, which is not entirely contained in the Lie algebra of %, (G°) = I(T)® due to
the definition of “singular torus” and the occurrence in opposite pairs in Lemma 1.5).

Now we’re almost done. For the given pair of distinct singular tori S = T, and S’ = T, in T,
pick A, N € X, (T') C X,(T)q such that

{a,\),{a’,\) >0, (a,\') >0> (a,\).
Then the Borel subgroups B = (B(A), I(T)) and B’ = (B(X), I(T)) containing T satisfy BS = B'®

but BS' + B
Note also that if we replace X with —\" then we can also arrange that (a’,\") >0 > (a,\). W

Now we can complete the proof of Theorem 1.3. When constructing B and B’ in the preceding
lemma with S = T, = T, and S’ = T, = T_;, we just need to exert control over which of the
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two Borel subgroups of Ga/(T, - Z.(G,)) containing T/S is the image of B'® = BS: is it the one
supporting the weight a or the weight —a. That is, our problem is not quite intrinsic to the distinct
codimension-1 tori T, and T3, but involves the specific choices among the pairs +a € X(7'/T,) and
+b € X(T/T,). By introducing signs on A and X if necessary, we can arrange our construction of
B and B’ to attain whatever signs we please. |

Inspired by Theorem 1.3 let’s now analyze the set of all Borel subgroups B containing a fixed
maximal torus 7' in a smooth connected affine group G over an algebraically closed field k. The
group N¢(T') obviously acts on this collection, and we have:

Proposition 1.8. The Ng(T)-action by conjugation on the set of Borel subgroups containing T
is tranistive, and every such Borel subgroup contains Zg(T'). The resulting transitive action of the
finite group W(G,T) = Ng(T)/Za(T) on the set of such Borel subgroups is simply transitive. In
particular, the number of such Borel subgroups is finite, and in fact equal to #W (G, T).

Proof. If B and B’ are two Borel subgroups containing 7' then conjugacy of Borel subgroups gives
B' = gBg~! for some g € G, so T and gT'g~' are maximal tori in the smooth connected (solvable)
B'. Hence, for some ¥ € B’ we have T = ('g)T(V'g)~!, so the element b'g € Ng(T') conjugates B
to B’. This proves the transitivity of the action.

Next we prove that Zg(T) C B. Since Zg(T) is normal in Ng(T'), and Ng(T')-conjugation
transitively permutes the set of Borel subgroups containing 7', it suffices to find one Borel subgroup
B of G that contains Zg(T) (as then B also contains 7' and hence the N¢(T)-conjugation takes
care of the rest). We know that Zg(7') is smooth and connected, so to get containment in a Borel
subgroup of G we just need to prove that it is solvable. Consider the quotient group H = Z¢(T)/T.
This is a smooth connected affine group in which there are no nontrivial tori, due to the mazimality
of T', so it is necessarily unipotent (as we proved in class). Thus, H is solvable, so Zg(T') is indeed
solvable.

For any w € W(G,T) = Ng(T)/Za(T) and n € Ng(T') representing w, the operation B —
nBn~! on the set of Borel subgroups containing 7' only depends on n mod Zg(T) = w since
Zc(T) C B. Thus, we have a transitive action of W (G, T) on the set of such Borel subgroups. It
remains to prove that this is a simply transitive action, which is to say that if n € Ng(T') satisfies
nBn~! = B for some n € Ng(T) then n € Zg(T). In class we discussed the important theorem of
Chevalley that every parabolic subgroup is its own normalizer (even in the scheme-theoretic sense,
which we do not need); the proof was deferred to Borel’s book, but the essential ingredients in that
proof were covered in class. As a consequence of that result, n € B, so n € Ng(T'). Our problem
is now intrinsic to B, or in other words we may rename B as G to reduce to the case when G is
solvable. Then by maximality of T" and the structure of solvable groups we can write G =T x U
for a smooth connected unipotent group U equipped with an action by 7. Our goal is to prove
that Ng(T) = Zg(T). The argument will be a trivial group theory calculation, not using anything
about U beyond its smoothness!

It suffices to show that if w € U and utu=' € T for all t € T then u is centralized by the
T-action. It is harmless to multiply on the right by ¢!, so it is equivalent to say u(tut=!) € T for
allt € T. But tut~! € U, so u(tut~!) € U. Thus, membership in T is equivalent to the condition
u(tut~!) = 1 which says exactly that u commutes with every ¢t € T; i.e., u € Zg(T). [ |

2. TORUS CENTRALIZERS AND UNIPOTENT RADICALS

The following theorem is the key miracle.



Theorem 2.1. For any k-torus S in G, we have
Zg(9); N %Zu(Gy) = Z#u(Za(S)5)
inside of G¢. In particular, if G is reductive then so is Zg(S).

The preservation of reductivity under passage to torus centralizers in connected reductive groups
is a powerful inductive technique to prove general theorems by dimension induction.

Proof. We may and do assume k = k. The S-conjugation on G preserves the normal subgroup
Z.(@G), and the scheme-theoretic intersection Zg(S) N %, (G) is simply the S-centralizer %,(G)°
in %,(G) under this action. But functorial considerations make it clear that

stgu(g) (S) =5 x %u(G)S7

and the left side is smooth and connected since it is a torus centralizer in the smooth connected
affine group S x %,(G)! Thus, it follows that the direct factor (as a k-scheme) %, (G)° is also
smooth and connected. (This same argument shows more generally that for any smooth connected
subgroup H in G normalized by S, Z¢(S) N H is smooth and connected.)

We conclude that Zg(S) N %, (G) is a smooth connected unipotent subgroup of Zg(S), and it
is visibly normal (as %,(G) is normal in G), whence Zg(S) N %Zu(G) C Zu(Zc(S)). It remains
to prove the reverse inclusion, which is to say that %Z,(Z(S)) C Z.(G). By the functoriality
of unipotent radicals with respect to surjective homomorphisms between smooth connected affine
groups (check!), it suffices to prove that under the quotient map 7 : G — G/%,(G), the image
of Z(S) is reductive (as then %, (Z¢(S)) must be killed in this image, and hence is killed by 7).
We know that the formation of torus centralizers commutes with the formation of images under
homomorphisms between smooth connected affine groups (Corollary 1.3 in the handout “Dynamic
approach ..."), so m(Zg(S)) is the centralizer of the torus 7(S) in the reductive group G/Z,(G).
Hence, we may rename G /%, (G) as G to reduce to proving that if G is reductive then so is Zg(.5).

The unipotent radical of any smooth connected affine group H (over k = k) is smooth connected
solvable and thus lies in some Borel subgroup. By conjugacy of Borel subgroups and normality
of the unipotent radical, it follows that %, (H) lies in all Borel subgroups of H, and thus (by
solvability of Borel subgroups) in the unipotent radicals of all of these Borel subgroups. Taking
H = Z(S), we obtain from Lemma 1.1 that

Ru(Zc(S)) € () #u(Za(S)NB) C () %u(B)
BDS BD2S
since the formation of the unipotent radical is functorial in smooth connected solvable groups (such
as with respect to the inclusion Zg(S) N B — B). Thus,
0

#u(Za(9) € | () 2u(B)
= red
It therefore suffices to prove that this final intersection is trivial. If we pick a maximal torus T
containing S, then the intersection can only grow if we restrict to those B that contain T'. But
restricting to such B yields the trivial group, by Theorem 1.3. |

Corollary 2.2. If G is a connected reductive group over a field k and T is a mazimal k-torus then
Za(T) = T; in particular, the scheme-theoretic center Zg is contained in all such T.

Also, for any surjective k-homomorphism 7 : G — G', m(%.(Gy)) = %u(G'E) In particular, if
G is reductive then so is G'.
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Our proof of the first assertion in this corollary will rest on Grothendieck’s theorem concerning
the existence of a maximal k-torus which remains maximal over k, as that ensures T3 is maximal
in G. But we only apply the equality Zg(7') = T in the setup where k = k (e.g., in the proof of
the behavior of unipotent radicals under quotient maps). Special cases were seen in HW3 Exercise
4(i) and HW4 Exercise 1.

Proof. We may and do assume k = k. By Theorem 2.1, Zg(T) is reductive since G is reductive.
But its maximal torus 7' is central, so the quotient Zg(7T')/T is unipotent. Hence, Zg(T) is a
solvable connected reductive group, so it is a torus (due to the structure of smooth connected
solvable groups over algebraically closed fields). By maximality, the inclusion T" — Zg(T') must
then be an equality.

Now consider the scheme-theoretic preimage of %,,(G’) under the quotient map G — G’. This is
a normal subgroup scheme of G (since %, (G’) is normal in G’), so the identity component N of its
underlying reduced scheme is as well. Then N inherits reductivity from G and admits %, (G’) as a
quotient, so we can replace G with N to reduce to showing that for any connected reductive group
G, a smooth connected unipotent quotient U of G must be trivial. Let 1" be a maximal torus in
G. Its image in U is trivial, so by the compatibility of torus centralizers with respect to surjective
homomorphisms between smooth connected affine groups (Corollary 1.3 in the handout “Dynamic
approach ...”) it follows that U = Zy;(1) is the image of Zg(T') = T. This forces U = 1 since U is
unipotent and 7' is a torus. |

Ezxample 2.3. Consider a smooth affine group G over an algebraically closed field k, and any quotient
7 : G — G with & reductive. Thus, G® maps onto the reductive G'°, so by Corollary 2.2 the
unipotent radical Z,(G) = %.(G) is killed by this quotient map. Hence, m factors uniquely
through the natural quotient map G — G/%,(G), and conversely any quotient of G which factors
through this latter map must be a quotient of G/%,(G) and hence is reductive. For these reasons,
the quotient G/%,(G) is sometimes called the mazimal reductive quotient of G.

Corollary 2.4. Let G be a connected reductive group over a separably closed field k. Then G is
generated by its mazimal k-tori, and Zg is the scheme-theoretic intersection of such tori.

This corollary is actually true over any field, but the proof requires deeper structure theory (and
extra care when k is finite).

Proof. Let N be the smooth connected k-subgroup generated by the maximal k-tori. Since G(k) is
Zariski-dense in G (as k = ks) and it normalizes N, it follows that N is normal in G. Thus, G/N
makes sense as a smooth connected group, and by construction it contains no nontrivial k-tori.
By Grothedieck’s theorem, such a group is unipotent. But G/N is reductive by Corollary 2.2, so
it is trivial. Hence, G = N, so G is generated by its maximal k-tori T. It follows that Zg is
defined (functorially) by the condition of centralizing all such T. But Zg(T) = T, so Zg is the
(scheme-theoretic) intersection of all such T'. [

We end this section with a surprisingly useful and non-obvious fact:

Corollary 2.5. Let G be a connected reductive group over a field k of characteristic p > 0, and
Zg its scheme-theoretic center. Then (Zg)y cannot contain oy, or Z/pZ as subgroup schemes. In
particular, if U is a smooth unipotent k-subgroup of G then Zg NU = 1 scheme-theoretically, and
soU — G/Zq is a closed k-subgroup inclusion.

Beware that it can happen that a connected reductive group G contains a normal non-central
infinitesimal subgroup scheme U having a composition series by «;,’s, though the resulting so-called
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unipotent isogenies G — G /U only exist in characteristic 2. The simplest example is the weird
purely inseparable isogeny PGLy — SLo obtained by factors the Frobenius isogeny SLa — SLo
through the central quotient SLy — PGLsy whose kernel ps is killed by Frobenius.

Proof. By Corollary 2.4, Zg is a k-subgroup of a torus. Thus, we just have to check that G,, does
not contain ay, or Z/pZ. Since Gy, [p] = pp, this amounts to the assertion that «, and Z/pZ are
not isomorphic to p,. The case of Z/pZ is clear since p, is not étale in characteristic p, and for
o, we can use the comparison of their p-Lie algebras to rule out an isomorphism (though Cartier
duality provides another way, once one has computed that «, is its own Cartier dual, which is not
entirely trivial to verify directly.) |

3. DERIVED GROUPS AND SEMISIMPLE GROUPS

Now we reap the fruit of our labors. A smooth connected affine group H over a field is called
perfectif H = 9 (H). For example, if G is connected reductive over a field k£ then 2(G) is a smooth
connected normal k-subgroup of G, so it is also reductive. How about its own derived group
2(2(G))? Can this decreasing chain involve several steps before it terminates (for dimension
reasons), as happens for solvable groups? No, the process ends immediately:

Lemma 3.1. Let G be a connected reductive group over a field k. The derived group Z(G) is
perfect.

Proof. Let N = 2(G). To prove that N is perfect, first note that Z(/NV) is normal in G, so we
may replace G with the (reductive!) quotient G/Z(N) to reduce to the case when Z(N) = 1. In
other words, the connected reductive group N is commutative, so it is a torus. But G/N is also
commutative and reductive, hence a torus, so G must itself be a torus! But then obviously N =1,
which is perfect. |

Recall that a solvable connected reductive k-group is just a k-torus by another name. By HW5
Exercise 4(iii), these are the same as the “Galois lattices” via the functor T ~» Homy, (Tk,, Gnm)-
The non-solvable case is much more interesting, and requires the apparatus of root systems to get
a handle on the structure. The beginning of the story is:

Proposition 3.2. Let G be a non-solvable connected reductive group over a field k, and assume it
contains a split mazximal k-torus T.

(1) The set ®(G,T) of non-trivial T-weights occurring on g is non-empty and stable under
negation in X(T), and for each a € ®(G,T) the weight space g, is 1-dimensional and the
only Q-multiples of a in ®(G,T) are +a.

(2) Fora e ®(G,T) and Gy := Z(Ty), the natural map T, x Z(G,) — G, is a central isogeny
with 2(G4) isomorphic to SLa or PGLy over k.

Part (2) explains the importance of SLy and PGLs in the general theory of connected reductive
groups (very similarly to the reason for the importance of sly in the general theory of semisimple
Lie algebras in characteristic 0).

Proof. By Theorem 1.3, I(T) = 1. Thus, we may apply Lemma 1.5 to get (1) (with the non-
emptiness of ®(G,T) being a consequence of the non-solvability of G, as we have seen earlier
that if ®(G,T) is empty then G is solvable). For (2), by Theorem 2.1 we know that the smooth
connected k-subgroup G, is reductive, so %, (G,) = 1. Each G, is non-solvable, because otherwise
by reductivity such a GG, would be a torus, and hence equal to its maximal torus 7', contradicting
that Lie(G,) = g’* contains the non-zero weight space in g for the nontrivial T-weight a. Thus, as
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we saw in the proof of Theorem 1.3, when the quotient G, /T, = G,/(T, x Z.(G,)) viewed over k
it is k-isomorphic to SLy or PGLo, so its split k-torus T/T, is maximal! Hence, by the classification
result from class, this quotient group must be k-isomorphic to SLo or PGLy. These are their
own derived groups by inspection (classical for SLgy, hence inherited by the quotient PGLs), so
P(Ga) — G /T, is surjective.

It follows that T, x Z(G,) — G, is surjective, with central kernel given by the anti-diagonally
embedded T, N Z(G,). It therefore suffices to prove that the connected reductive Z(G,) has a
1-dimensional split maximal k-torus, as then it must be k-isomorphic to SLg or PGLy (by our clas-
sification theorem) and so by inspection has finite scheme-theoretic center (ug and 1 respectively).
That would force T, N Z(G,) to be finite, completing the proof of (2).

For any smooth connected normal k-subgroup /N in G the scheme-theoretic intersection NNT' is a
maximal k-torus of N. Indeed, we may assume k = k (by Grothendieck’s theorem!), and then for a
maximal torus S in N and a maximal torus S’ of G containing S we may find g € G(k) conjugating
S"to T. Thus, it conjugates S’ N to TNN, so TNN contains the maximal torus gSg~—' of N. But
then T N N lies in the scheme-theoretic centralizer in N for the maximal torus gSg~!, yet in any
connected reductive group (such as N) every maximal torus is its own scheme-theoretic centralizer
(Corollary 2.2). Hence, TN N = gSg~! is a maximal torus of N.

Now returning to our setup over a general field k, setting N = 2(G,) (normal in G,) implies
that . =T N 2(G,) is a maximal k-torus in Z(G,). But this must be split (as T is split), so if
the common dimension of the maximal k-tori of 2(G,) (split or not) is 1 then we will be done. (At
this point we could increase k to be algebraically closed, but this is unnecessary so we do not.) It
is a general fact that a central torus C in a smooth connected affine group H has finite intersection
with Z(H). (Proof: We can assume the ground field is algebraically closed, so C is split. Pick
a faithful linear representation H — GL(V'), and form the weight decomposition V' = ®V,, with
respect to the faithful C-action, so the x; generate X(C') up to finite index. Then by centrality,
H lands in [[GL(V4,), so Z(H) projects to have determinant 1 in each factor. Thus, C N Z(H)
maps into each GL(V,,) with scalar image killed by the determinant, hence inside the diagonal pg,
with d; = dim V,,. It follows that for n = [][d; we have that x}* kills C' N Z(H) for all i. But the
Xi generate a finite-index subgroup of X(C'), so C' N Z(H) is killed by a finite-index subgroup of
X(C). Hence, C N Z(H) cannot contain any tori of positive dimension, so it is finite.) It follows
that T, N 2(G,) is finite, so Z(G,) — Go/T, is an isogeny, with target isomorphic to SLy or PGLo.
Thus, the split maximal torus .7 in Z(G,) is 1-dimensional, so we are done. |

Theorem 3.3. Let G be a connected reductive group over a field k, and Z the mazximal central
torus. The formation of Z commutes with any extension of the ground field and the multiplication
homomorphism

Zx 9(G) - G

18 an 1sogeny with central kernel.
In particular, 2(G) — G/Z and Z — G/ Z(G) are isogenies with central kernel.

The basic example of this theorem is the central isogeny Gy, x SL, — GL,, whose kernel is
the central anti-diagonal u,, along with the induced central isogenies SL, — PGL, and G,, —
GL, /SL,, = G,, given by t — det(diag(t)) = t".

Proof. The maximal central torus is the same as the maximal torus contained in the commutative
scheme-theoretic center Zg, so by consideration of n-torsion for n not divisible by char(k) we see
that Z is the identity component of the Zariski closure of U,Z[n]. Hence, the formation of Z
commutes with extension of the ground field.
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At the end of the proof of Proposition 3.2, we saw that the derived group of a smooth connected
affine group always has finite intersection with any central torus. Hence, Z N Z(G) is finite. It
suffices to prove that G/Z is perfect. We claim that there are no nontrivial central tori in G/Z. If
S is a central torus in G/Z then its preimage S’ in G is a torus (being an extension of the torus
S by the torus Z) and is also normal in G, forcing centrality in G (since G is connected). That
implies S’ C Z, s0 S =1 as claimed.

We may now rename G/Z as G to reduce to showing that if Z = 1 then 2(G) = G. In particular,
we may and do assume that k is algebraically closed (since we already proved that the formation
of Z commutes with extension of the ground field). Pick a maximal torus 7" in G. By Corollary
3.2, for each a € ®(G,T), the a-weight space is 1-dimensional and the Q-multiples of a in ®(G,T)
are precisely +a. The set ®(G,T) generates a finite-index subgroup of X(7'). Indeed, otherwise
there would be a nontrivial torus S in T killed by all elements of ®(G,T), so g = g° = Lie(Z5(S)),
forcing Z(S) = G and so contradicting that we arranged for G to contain no nontrivial central
tori.

For each a € ®(G,T), Proposition 3.2(2) ensures that for T, = (kera)? ;, the natural map

Ta X .@(Z(;(Ta» — Z(;(Ta)

is a central isogeny. More specifically, Z(Z¢(T,)) equipped with its T'/T,-action has exactly +a
as the nontrivial weights on its Lie algebra, and S, := T N Z(Z¢(1,)) is a 1-dimensional maximal
torus of Z2(Zg(1y)). Thus, the smooth connected subgroups Z(Z¢(1,)) of Z(G) generate a smooth
connected subgroup H of Z(G) whose Lie algebra supports all weight spaces for the nontrivial 7-
weights on g. Since b is a T-stable subspace of g which contains all weight spaces for nontrivial
weights, whereas

Lie(T) = Lie(Zg(T)) = g”

is the weight space for the trivial weight, to prove that G = Z(G) it remains to show that ' C 2(G).

We will prove that T is equal to the group (Ng(T'),T) generated by commutators ntn~1t=1 for
n € Ng(T)(k) and t € T(k). Let W = Ng(T)(k)/Zc(T)(k) = Na(T)(k)/T (k) denote the usual
Weyl group which acts on T, so (Ng(T),T) is the smooth connected subgroup of T' generated by
the images of the maps T — T defined by t +— (w.t)t~! for w € W. There is a natural action of
W on the lattice X, (T") of cocharacters A : G, — T, and the sublattice X, ((Ng(T'),T)) contains
all elements w.\ — \. Hence, to prove that the subtorus (Ng(7T'),T') in T is full, it suffices to show
that the elements w.A — X\ generate a finite-index sublattice of X,(7"), or equivalently that the
Q[W]-module X, (T")q has vanishing space of coinvariants. Since W is finite (HW8 Exercise 4(iii)),
so Q[W] is semisimple, it is equivalent to have a vanishing space of W-invariants, which is to say
that X,(T)" = 0. In other words, we claim that 7% is finite.

We will prove that 7" C ker(2a) (scheme-theoretically) for all a € ®(G,T), so (T™)%, C
(ker(2a))°, = (kera)® , = T,. This is sufficient because the subtorus (N,T,)%, in T is killed by
all a € ®(G,T) and hence is trivial (as we have seen that ®(G,T) generates X(T')q, due to the
arranged property Z = 1). Consider the group G, = Z¢(T,) and its derived group H, = 2(G,)
(which is isomorphic to SLg or PGL3), so Ty, is the maximal central torus in G, and S, := TN H, is
a maximal torus of H,. Pick any representative h, € H, of the nontrivial element in Ny, (Ss)/Sa,
so hg acts on S, via inversion. It also centralizes Ty, and so normalizes T, - S, = T. Thus, the class
wq € W of h, centralizes T, and swaps the weight spaces +a for S,, which in turn are the weight
spaces for T'/T, acting on Lie(G,) (since S, — T'/T, is an isogeny). In other words, the W-action
on X(T) negates a € X(T/T,). It follows that if t € T (R) for a k-algebra R then

a(t) = a(wg.t) = (wg.a)(t) = (—a)(t),
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50 (2a)(t) = 0. In other words, ¢ € ker(2a), as desired. [

Now we can finally prove the equivalence of several different ways to characterize semisimple
groups:

Corollary 3.4. Let G be a smooth affine group over a field k. The following conditions are
equivalent.

(1) The maximal smooth connected solvable normal subgroup %(Gz) of Gy, is trivial.
(2) The group G is reductive and has finite center.
(3) The group G is reductive and G° is perfect.

Condition (1) is the usual definition of semisimplicity, but sometimes one sees (2) or (3) used as
cheap definitions. In practice it is important to know the equivalence among all of these conditions.

Proof. Under all hypotheses G is reductive and GV is readily checked to inherit all of the hypotheses
from G, so we now may assume G is connected reductive. By Lemma 3.1 and Theorem 3.3, there
is then is a central isogeny
[:Zx92G)—G

where Z is the maximal central k-torus and 2(G) is perfect. Thus, (2) implies (3). Likewise, if (3)
holds then the isogeny property for f implies Z = 1, so there is no nontrivial central torus. But
the scheme-theoretic center Zg is contained in a maximal k-torus T', so (Zg)2, is a central torus
and thus is trivial. This forces Zg to be finite, so (2) holds. This proves the equivalence of (2) and
(3).

It is clear that (1) implies Z = 1, and hence implies (3). Conversely, if (3) holds then R = Z(G7,)
is a smooth connected solvable normal subgroup of the perfect connected reductive group Gz.
Normality forces R to be reductive, and solvability forces it to be a torus. Normality in the
connected Gy then forces this torus to be central. But (3) is equivalent to (2), so this central torus
is trivial. Thus, (1) holds. u

4. ROOT GROUPS AND ROOT DATA

Finally we come to the highlight of the basic theory: the link between connected reductive groups
and combinatorial objects called root data. This link was first discovered in the theory of compact
Lie groups and the structure theory of complex semisimple Lie algebras, where the slightly coarser
notion of root system was used. Roughly speaking, root systems keep track of group-theoretic
information “up to isogeny” whereas the root datum keeps track of information up to isomorphism.
(The root datum viewpoint is also necessary for keeping track of the maximal central torus. But
this was not regarded as an important piece of information in the early days of Lie groups, since a
central torus is not particularly interesting from a representation-theoretic perspective.)

Throughout this section, G is a connected reductive group over a field k and T is a maximal k-
torus that we assume to be k-split. We have seen in the homework that in many natural examples,
there is no such 7' (e.g., unit groups of nontrivial central division algebras over k). Those G
admitting such a T are called k-split. Note that since every maximal k-torus remains maximal
after a ground field extension, and every torus splits over a finite Galois extension, loosely speaking
every connected reductive k-group is a “twisted form” of a split one. Hence, the general nature of
the classification of connected reductive groups comes in two parts: the combinatorial classification
in terms of root data in the split case, which we will begin to discuss below, and then a Galois
cohomological part to keep track of how “twisted” a given group is from a split one (thereby
involving the structure of automorphism groups of split connected reductive groups, which is again
best understood with the aid of root data, along with Galois cohomological methods).
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Remark 4.1. Everything we do below will rest on the choice of T. Now of course it is typically
not true (when k # k,) that every maximal k-torus in k-split; already for GL,, this fails when k
has degree-n finite separable extension fields. But it is true that all k-split 7" are G/(k)-conjugate.
This is by no means obvious, and its proof rests on the structural understanding of the subgroup
structure obtained via root data. Hence, one can keep in mind that at the end of the story all
such choices of T" will turn out to be “created equal”, and so in the end we will get results that are
intrinsic to G up to G(k)-conjugation (which is best possible, in some sense). For our purposes,
the choice of T' will simply be fixed throughout the discussion.

The beginning of our work is Proposition 3.2(1). The following terminology will be convenient:

Definition 4.2. The roots of the pair (G,T) are the non-trivial weights for 7" under its adjoint
action on g = Lie(G). In other words, it is the set ®(G,T) C X(T).

By Proposition 3.2(1), for each a € ®(G,T) the corresponding weight space g, in g is 1-
dimensional, and so we have a weight space decomposition

9 =1® (Baca(c,0a)
with lines go, where t = Lie(7). In particular, ®(G,T) = 0 if and only if G = T', which is to say
that G is commutative (or equivalently, by reductivity, solvable). It is the non-solvable case which
is the most important one, and we want to T-equivariantly “exponentiate” each g, to a copy of G,
in GG. Ultimately this rests on a concrete calculation with SLo. First we prove the general result,
and then we see what it says for SL,.

Proposition 4.3. For each root a of (G, T), there is a unique smooth connected k-subgroup U, C G
normalized by T such that the subspace Lie(U,) equipped with its T-action is go. Moreover, U, ~ G,
as k-groups.

The k-group U, is called the root group in G attached to a € ®(G,T'). Beware that it is crucial
(in positive characteristic) to assume that U, is T-normalized, not merely that its Lie algebra is
T-stable under the adjoint action. Otherwise one can make counterexamples using the graph of
Frobenius in G, x G,.

Proof. Consider the unique codimension-1 torus T, = (kera)® ; in 7T killed by the nontrivial char-
acter a of T. The first task is to control all possibilities for U, by proving that if H C G is a
T-normalized smooth connected k-subgroup for which Lie(H) = g, then H is contained in the k-
group Z(Zq(1,)) that we know to be k-isomorphic to SLy or PGLy. This is a geometric problem,
so we may temporarily assume k = k.

The Lie algebra condition forces H to be 1-dimensional, so H is either G, or GL; (since k = k).
The latter case is impossible, since then H would be a torus normalized by T', yet the T-action on H
would then be trivial (since T is connected and Aut(GL;) = Z/2Z), contradicting the nontriviality
of the T-action on Lie(H) = g,. Hence, H is unipotent.

Next we claim that the Ty-action on H must be trivial, so H C G, := Zg(1y). Since H = G,,
for any t € T(k) the conjugation action of ¢ on H is given by an algebraic group automorphism
of G,, and the only such automorphisms are the nonzero constant scalings. In other words, ¢ acts
by some x(t) € k*. But then the induced action on Lie(H) = Lie(G,) is easily seen to also be
scaling by the same x(¢) on this line, yet Lie(H) = g, inside of g by hypothesis, so x(t) = a(t). In
particular, if ¢ € T, (k) then its action on H is trivial. Since H is unipotent and G,/Z(G,) is a
torus (see Proposition 3.2(2)) the containment of H in G, forces H C 2(G,,), as desired.

Now we return to the situation over a general field k, knowing that the only possibilities for
U,, if any is to exist at all, are to be found inside of the k-subgroup 2(G,) that we know to be
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k-isomorphic to SLo or PGLsy. In fact, the proof of existence of such a k-isomorphism arranged it
so that any desired 1-dimensional k-split torus in Z(G,,) is carried to the diagonal torus in SLg or
PGLy. There is a natural such k-torus: S, := T N Z(G,)! Indeed, since T, x Z(G,) — G4 is a
central isogeny, and the scheme-theoretic preimage of T under this map is T, x (T'N Z(G,)), so
to prove that T'N Z(G,) is really a torus (then necessarily 1-dimensional and k-split due to the
k-isogeny to the k-split T') we just have to prove the following auxiliary useful fact:

Lemma 4.4. Let f: H — H be a central isogeny between connected reductive groups over a field
k. For every maximal k-torus T in H, the scheme-theoretic preimage T' := f~Y(T) is a mazimal
k-torus in H', and T — T is a bijection between the sets of maximal k-tori in H' and H.

Proof. Once it is proved that 7" is a torus, it must be maximal for dimension reasons (due to
maximality of 7" in H), and the rest would then follow since the kernel is finite and we know that
surjective homomorphisms carry maximal tori onto maximal tori. Thus, we may and do assume k
is algebraically closed. For a maximal torus S’ in H’, the image f(S’) is a maximal torus in H,
so it has the form hTh™! for some h € H. Picking h' € f~1(h), we may replace S’ with h'~'S'h/
to get to the case that f(S’) =T. But ker f C Zy» C Zy/(S") = 5, so §'/(ker f) = T inside of
H'/(ker f) = H. Hence, S’ is the scheme-theoretic preimage of T', so we have reconstructed 7" as
a torus. |

Returning to our situation of interest, we pick an isomorphism ¢ from Z(G,) onto SLy or PGLy
such that S, goes over to the diagonal torus D. Since T' = S, - T, and T, centralizes Z(G,), a
k-subgroup of Z(G,) is T-normalized if and only if it is S,-normalized, and then the action of T°
on its Lie algebra is uniquely determined by the action of S, on the Lie algebra (as T}, must act
trivially there). Hence, we have reduced everything to a very special case: G is either SLy or PGLy
and T is the diagonal torus D!! This is so concrete that the rest will be a pleasant calculation.

By direct calculation with sly and pglsy, the non-trivial weights for the adjoint D-action are easily
seen (check!) to be the characters

[t 0 s [t 0 ,2
ay <0 t_1>'—>t, a_ : <0 t_1> —t

in X(D) in the SLy-case, and the characters

(t 0 (Tt 0 _1
a+.<0 1)»—>t, a.<0 1>r—>t

in the PGL2-case, with respective weight spaces given respectively by the Lie algebras of the “upper
triangular” unipotent subgroup Uy and the “lower triangular” unipotent subgroup U_. In both
cases, by inspection we see that Uy are in fact normalized by D, and Uy ~ G, as k-groups. Thus,
the existence part of the problem is settled, and it remains to prove uniqueness. In particular, now
we may and do assume that k = k, so any possibility which exists must be a copy of G, inside of
our group.

Any possibility U for U, yields a k-subgroup D x U that is 2-dimensional, smooth, connected,
and solvable, so by dimension reasons it must be a Borel subgroup that contains D. But we know
from Proposition 1.8 that the set of Borel subgroups is permuted (simply) transitively by the group
W (G, D) of order 2, so the two such Borel subgroups By = D x Uy are the only ones! This forces
U C By, so U = Uy for dimension reasons. Then correspondingly g, = Lie(U) = g4, , so the Lie
algebra condition on U inside of g picks out exactly one of the two possibilities as the only one
which can work, and we have seen that this possibility really does work. |
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Ezample 4.5. Let G = SL,, and T' = D the diagonal torus. Then for each 1 < i # j < n let U;; be
the k-subgroup u;j : G, — G defined by setting u;;(x) to be the matrix whose diagonal entries are 1
and all other entries vanish except for the 7j-entry which is z. This is easily seen to be a k-subgroup
of G that is normalized by D, with t = diag(ty,...,t,) acting by t - u;j(z) - t7F = w;;((t:/t)z).
Thus, the space Lie(U;;) C sl,, is a T-weight space for the nontrivial weight a;;(t) = t;/t;. (Note
that for n = 2 and (i,j) = (1,2), we get t;/ta = t3 since t = 1/t; due to being in SLy.) This
already gives us a collection of weight spaces filling up the entire dimension of sl, away from the
diagonal part t, so we have found all of the roots, as well as the root groups.

Another fun example is G = Sp,,, for a suitable “diagonal” T'. This is worked out from scratch
in the first few pages of §9.3 of “Pseudo-reductive groups”.

Having assembled the set of roots ®(G,T) and the T-normalized root group U, ~ G, inside of
G for each root a, we next introduce the coroots. This will be a collection of nontrivial cocharacters
a” : GL; — T which again arise from special arguments with SLy and PGLs:

Proposition 4.6. For each a € ®(G,T), there is a unique k-homomorphism a" : GLy — S, :=
TN 9(Zg(Ty,)) such that aoa” € End(GLy) = Z is 2; i.e., a(a¥(t)) = t2. That is, relative to any
k-isomorphism uq : G, >~ U, we have

a’ (t)ug(x)a (1)1 = uy ().
In the PGLg-case the map a” is a degree-2 isogeny, and in the SLa-case it is an isomorphism.

Note that the choice of u, really does not matter, since any two are related by composition with
Aut,(G,) = k*, which clearly preserves the proposed condition.

Proof. The problem is intrinsic to the k-split pair (2(Z¢(T,)), S,) that we have seen is k-isomorphic
to (SLg, D) or (PGLg, D), and by composing such an isomorphism with a representative of the non-
trivial class in the Weyl group of D if necessary we may arrange that the a-root group U, goes over
to the upper-triangular unipotent subgroup U,. So now the problem is an entirely concrete one
about U, and D inside SLy and PGLy. In particular, we may and do use the choice uq(z) = (3 %).
The existence of a” is now by inspection: a”(t) = ({,% ) in the SLy-case and a”(t) = (%, 9) in the
PGLy-case. For uniqueness it suffices to check on k-points, and that is safely left to the reader. W

Definition 4.7. The set of coroots of (G,T) is the subset ®"(G,T) C X.(T) consisting of the
cocharacters a” for all a € ®(G,T).

By construction, (—a)¥ = —a". We will see soon that a¥ determines a, but if you think about it
briefly this is not immediately obvious from the definitions. The first step towards understanding
of coroots is to give an alternative way to think about them in terms of the finite Weyl group
W(G,T) = (Na(T)/T)(k) = Na(T)(k)/T(k) (latter equality by Hilbert 90, since T is k-split!).
For each root a, the pair (2(G,), Sa) is k-isomorphic to (SLg, D) or (PGL2, D), and in particular
has a Weyl group of order 2. All elements of Z(G,) centralize the codimension-1 torus Ty, so since
T =T, - S, we see that any representative n, € Z(G,) of the non-trivial class in W(2(G,), Sa)
actually normalizes all of T' and does not centralize it! That is, we have an injective homomorphism

W(2(Ga), Sa) — W(G,T).

We let w, € W(G,T) denote the image of the nontrivial element in this order-2 subgroup. Under
the natural faithful action of W(G,T') on T, this element acts trivially on 7, and acts via inversion
on S, since it is represented by an element of Ng(q,)(Sa) not centralizing S,. Thus, on X(7')q it
acts trivially on a hyperplane and via negation on a complementary line, so it is a reflection.

We define s, € End(X(7T)) to be the endomorphism induced by w,.
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Proposition 4.8. Let (-,-) : X(T) x X\ (T) — End(GL;) = Z be the natural perfect pairing
(x, \) = x o A between finite free Z-modules. Then

sa(r) = — (2,0")a.
In particular, the Weyl element w, € W (G, T) uniquely determines the coroot a”.

There will be more work to do in order to show that ¢V determines a.

Proof. By definition s, is the action of w, induced on X (7). But w, acts trivially on T, C ker a, and
it acts by inversion on the subtorus S, that is an isogeny complement to 7T},. Thus, the isomorphism
X(T)q ~ X(Sa)q x X(Ta)q induced by the isogeny S, x T, — T implies that s,(a) = —a and s,
fixes a hyperplane pointwise, so it is a reflection on X(7")q. Since it negates a # 0, necessarily
5q(z) =  — £y(x)a for a unique nonzero linear form ¢, on X(7T')q. Our problem is to prove that
by = (-,a").

Under the perfect duality pairing, the dual automorphism s} on the dual lattice X(T')V = X, (T
is also induced by the involution w, acting on T' (check!), so it fixes the hyperplane X.(73)q
pointwise and negates the line X, (S,)q through a". Hence, sy (\) = A — (x4, A\)a" for a unique
zq € X(T')q. But it is easy to directly compute the dual of & — x —{,(z)a, namely A — XA—(a, A\){,.
This forces £, = a¥ (and x4 = a). [ |

Somewhat less evident is:
Proposition 4.9. The surjective map of sets ®(G,T) — ®V(G,T) defined by a — a" is bijective.

Proof. Consider roots a and b such that a¥ = 0" in X(T'). Consider the element w,w, € W(G,T) C
GL(X(T)). This is the product s,sp, and from the explicit formulas

sa(®) =2 — (r,0")a, sp(x) =z — (2,0V)b=2 — (x,a")b
it is easy to compute
sasp(T) =z + (x,a")(a —b).
Working in X(T')g, consider an eigenvector v of sq8p, 0 sq8p(v) = cv. Thus, cv = v— (v, a’)(a—0).
If ¢ # 1 then v is a multiple of a — b, yet a — b is fixed by s,s;, because
<a’ —b, a’V) = <a7av> - <b7 aV> = <CL, aV> - <b7 bv> =2-2=0.

This would force v to also be fixed by s,sp, contradicting that ¢ # 1. In other words, ¢ = 1 after all.
That is, the only eigenvalue of s,sp is 1, which is to say that s,s; is unipotent. But s,sp lies in the
finite subgroup W (G, T') on the automorphism group of X(7'), so unipotence forces this operator
to be the identity.

We conclude that s, and s, are inverse to each other. Yet each is a reflection, hence of order 2,
so in fact s, = sp. Now s, is a reflection through the line spanned by a in X(7T')q, and likewise s,
is a reflection through the line spanned by b, so in fact b € Q - a in X(T')q. By Proposition 3.2(1),
this forces b = +a! Since (—a)" = —a" # a", the case b = —a is ruled out. [ |

We require one more elementary observation:

Proposition 4.10. For each root a, the reflection sq : * +— x — (x,a”)a on X(T') preserves the
finite set of roots ®(G,T). Also the dual reflection

s) A= {a, \)a"

on the dual lattice X, (T) preserves the finite set of coroots ®V(G,T).
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Proof. By our preceding calculations, the actions of s, and its dual are exactly the natural actions
induced by the action of w, on T. Thus, the first assertion is a consequence of the obvious fact
that the action of Ng(T') on T permutes the set ®(G,T") of nontrivial T-weights on Lie(G). For
the second assertion, it is likewise suffices to prove that the Ng(7T')-action on T permutes the set
of coroots. For any root a and any n € Ng(T') representing w € W (G, T), w.a" is a cocharacter of
nSen~! = Sy.q (equality since S, :=T N 2(Z¢(Ty,)) and T, := (kera)?,). It is easy to check that
it satisfies the property in Proposition 4.6 for the root w.a (verify!), so it must be (w.a)". [

Now we can finally state the definition we’ve been after:

Definition 4.11. A root datum is a 4-tuple (X, R, XV, R") consisting of a pair of finite free Z-
modules X and XV equipped with a perfect duality pairing (-,-) : X x XV — Z and a pair of finite
subsets R C X and RY C XV such that there exists a bijection a — a" satisfying the following two
axioms:

(1) For all @ € R, {(a,aY) = 2.

(2) For all a € R, the dual endomorphisms s, ,v of X and s,v 4 of XV defined by

Saav(T) =2 — (x,0")a, suvq (") =2 - (a,2*)a”

satisfy sqqv(R) = R and s,v o(RY) = RY.

Note that the first axiom forces a,a" # 0, as well as the fact that s, v and s,v , respectively
negate the lines through a and a" and pointwise fix the hyperplanes orthogonal to a* and a (working
over Q, say). Hence, each is a reflection.

There is a subtlety lurking here: we did not impose the specification of the bijection a + a“
as part of the definition. Rather, this was simply assumed to exist in some way. Most textbooks
impose the bijection as part of the structure of a root datum, and the entire basic theory can be
developed in this way. But it is more elegant to not impose this, which we can do thanks to:

Proposition 4.12. In a root datum, the bijection a — a" is uniquely determined. Writing s, :=

Saav and Sqv = Sqv 4 = Sy, we also have s4(b)Y = s,v(bY) for all a,b € R.

Proof. This is Lemma 3.2.4 in “Pseudo-reductive groups”; the proof is an elementary argument in
linear algebra, relying on a small calculation via the axioms, given in SGA3. |

The entire preceding analysis shows that to any split pair (G,T) we have associated a root datum
R(G,T) = (X(T),®(G,T),X(T),®"(G,T)),

under which the reflections s, € End(X(7')) are induced by the elements w, € W(G,T). Thus,
the subgroup of W (G, T) generated by the reflections s, is intrinsic to the root datum, and it is
denoted W(R(G,T)). The finiteness of this group is a general fact unrelated to algebraic groups:

Lemma 4.13. The group W(R) C GL(X) generated by the reflections s, for a € R is finite.

This is called the Weyl group of the root datum; it is trivial precisely when R is empty. The
finiteness of W (R) is proved in an elegant manner in Exercise 7.4.2 in Springer’s book “Linear
algebraic groups”. On the same page Springer reviews how a root datum with non-empty R gives
rise to a root system (including the axioms for the latter), consisting of the nonzero Q-vector space
V spanned by R inside of Xq and its finite set of non-zero vectors R that span it; the same exercise
easily shows that the Weyl group of a root datum with non-empty R is naturally isomorphic to the
Weyl group of the corresponding root system. In Bourbaki’s LIE Chapter VI, it is root systems
and not root data which are studied. This is akin to the dichotomy between isogeny classes of split
connected semisimple groups and isomorphism classes of split connected reductive groups: all of
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the real work is at the level of the root system, but the root datum is necessary to keep track of
things at a level finer than isogenies.

The root data arising from split connected reductive groups have an extra property: if two roots
are Z-linearly dependent, they are the same up to a sign. Such root data are called reduced. The
general case is not too far off from this:

Proposition 4.14. If (X, R, XV, RY) is a root datum and a,a’ € R satisfy a = ca’ for some c € Q
then ¢ € {£1, £2}.

Proof. We may assume R is non-empty, and then this assertion is intrinsic to the associated root
system. The result is then a basic fact proved early in the development of root systems; see
Proposition 8(i) in §1.3 of Chapter VI of Bourbaki LIE. The argument is a nice bit of Euclidean
geometry. |

Remark 4.15. Just because split connected reductive groups only give rise to reduced root data,
and so many texts ignored the non-reduced cases, the latter are important! First of all, in the
study of connected reductive k-groups G which are not necessarily split but do contain a non-
trivial k-split torus (perhaps not maximal as a k-torus), one associates a so-called relative root
datum which is a root datum that can be non-reduced. These already show up in the classification
of connected semisimple R-groups which are not split and have non-compact group of R-points.
The same happens over all fields that aren’t separably closed. They also show up in the theory of
pseudo-reductive groups in characteristic 2.

In terms of the classification of root data via root systems, the only “irreducible” cases for which
there are roots which are non-trivially divisible in the character lattice X are “simply connected”
type C, which correspond to symplectic groups (so in fact non-reducedness is a somewhat “rare”
occurrence, but it cannot be entirely ignored). For example, we saw by hand that SLo has its roots
that are divisible by 2 in the character lattice; even for PGLy this does not happen.

The next step in the story is to formulate and prove the so-called Existence, Isomorphism, and
Isogeny theorems which characterize isomorphism classes of k-split pairs (G, T') up to the (T'/Z¢a)(k)-
action on G in terms of root data, as well as characterize isogenies between two such pairs in terms
of the root data. (Beware that typically T'(k)/Za(k) is smaller than (T/Z¢g)(k) when Zg is not a
torus, such as G = SL,, with k* # (k*)™.) This can also be refined via an additional structure called
a pinning which serves to get rid of the interference of the (T/Z¢)(k)-action on G. These matters
are explained in detail in Appendix A.4 of “Pseudo-reductive groups”, including the demonstration
via faithfully flat descent that for the Isomorphism and Isogeny theorems it suffices to prove the
results over algebraically closed fields, in which case there are multiple literature references one
may consult. (For the Existence theorem one just has to find enough groups, and that was known
classically away from the exceptional root systems.) In that Appendix A.4 the notion of simply
connected central cover in the semisimple case is also discussed.

There is much more to say, such as relating the root datum to the subgroup structure. We end
with just one observation along these lines, which is to prove (conditional on some general basic
results in the theory of root systems) that the containment W (R(G,T)) C W(G,T) is an equality
(i.e., W(G,T) is generated by the reflections s,). This rests on:

Proposition 4.16. A Borel subgroup B in G containing T is uniquely determined by the set ®(B)
of roots a such that g, C Lie(B): explicitly, B is generated by T and the root groups U, for all such
a.

Proof. By N¢(T)-conjugacy among all such B, it suffices to prove the result for a single B. The
theory of root systems provides the existence of linear forms on X(7")q that are non-vanishing on
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the set of roots ®(G,T") and meet each pair {+a} in exactly one element. By fixing such a linear
form and scaling it by a sufficiently divisible nonzero integer, we may arrange it to be Z-valued, so
it corresponds to a nontrivial k-homomorphism A : GL; — T.

In terms of the handout “Dynamical approach ...”, consider the corresponding smooth connected
k-subgroup B(\) := Pg(\) = Zg(\) x Ug(A) with Ug(A) a smooth connected unipotent k-subgroup
whose Lie algebra is the span of the nonzero weight spaces for those a € X(7') such that (a, A) > 0.
Such an @ must be nonzero, and hence must be a root. But A was rigged so that (a, A) # 0 for all
roots a, so every root space g, for a root a occurs inside the Lie algebra of either Ug(A) or Ug(—A).
Likewise, the centralizer Zg () of the subtorus A(GL;) is smooth and connected and contains T°
in its center, so its Lie algebra has no nonzero T-weights. Thus, the containment 7' C Zg(A) is an
equality on Lie algebras, and so is an equality of k-subgroups of G. It follows that B(\) is solvable.

Now we claim that B()) is a Borel subgroup. Indeed, if not it would be contained in a Borel
subgroup B’ and for dimension reasons Lie(B’) would then have to contain some weight space g_,
for a root a such that (a,\) > 0. In other words, +a € ®(B’). So we just have to rule out such a
possibility. Consider B/, := B’ N Zg(T,). By Lemma 1.1, this is a Borel subgroup of G, := Z5(T,)
that contains T. But G, is generated by the central torus T, and its derived group Z(G,), so for
dimension reasons the containment t® g, @ g_, C Lie(G,) is an equality. All of these weight spaces
live in Lie(BY,), so the containment B!, C G, is an equality. In other words, G, is solvable. That is
absurd, since Z(G,,) is visibly non-solvable (it is SLy or PGL3)!

We conclude that B()) is a Borel subgroup. For every root a whose weight space g, lies in
Lie(B())), consider the root group U,. This is G, on which \(t) acts as scaling by a(\(t)) = t{®V
with (a,A) > 0. Thus, the functorial characterization of Ug(\) gives that U, C Ug(\). Varying
over all such a, the k-subgroups U, in Ug(A) have Lie algebras that directly span Lie(Ug())), so
the smooth connected k-subgroup they generate must equal Ug(A) (as Ug(A) is connected). But
B(A) = T x Ug(X), so B(A) is generated by T and the root groups U, for those roots a whose
weight space is contained in Lie(B())). [

Within the theory of root systems, there is a concept of positive system of roots: these turn out
to be exactly the sets of roots cut out by the condition (a,A) > 0 for linear forms A on Xq that
are non-vanishing on all roots. It is a general fact that the Weyl group of the root system simply
transitively permutes the set of such positive systems. But in the case of a split pair (G,T') we just
saw in (the proof of) Proposition 4.16 that such positive systems ®* in ®(G,T) are exactly the
sets of roots that occur in the Lie algebra of a Borel subgroup containing 7. Indeed, we proved
that the Lie algebra of some Borel subgroup has this form, and hence all do by the transitive
W (G, T)-action on the set of Borel subgroups and the evident fact that the W(G,T)-action on
X(T) preserves ®(G,T).

Now choose w € W(G,T). We will prove w € W(R(G,T)). By the definitions, clearly ®(w.B) =
w.®(B). Since W(R(G,T)) acts (simply) transitively on the set of all positive systems of roots
in ®(G,T) (by general facts in the theory of root systems), it follows that there exists w’ in the
subgroup W (R(G,T)) such that w.®(B) = w'.®(B), so ®(w~'w'.B) = ®(B). By Proposition 4.16
this forces w™lw’.B = B, and hence (by Proposition 1.8) w = w’! Thus, the Weyl group of (G, T)
is exactly the Weyl group of the associated root datum (or root system). And we have even proved
a bonus: the set of Borel subgroups containing 7" is in natural bijective correspondence with the
set of positive systems of roots in the root system. This is the first indication of how the subgroup
structure of GG in relation to T can be expressed in terms of the root datum and even be understood
via general results in the combinatorial theory of root systems.



