1. A map of abelian varieties \(f : A \to B \) over \(k \) is an \textit{isogeny} if it is surjective with finite kernel on \(\mathbb{F} \)-points, or equivalently (by generic flatness and translations) if \(f \) is finite and flat.

 (i) Using the theorem of Deligne from Exercise 5 in HW4 and the “quotient” property for fpqc homomorphisms between group schemes (as discussed in class), prove that if \(\dim A = \dim B \) then \(f \) is an isogeny if and only if there exists \(g : B \to A \) such that \(g \circ f = [n]_A \), in which case \(f \circ g = [n]_B \).

 (ii) Let \(\ell \) be a prime with \(\ell \neq \text{char}(k) \). Prove that \(f \) is an isogeny if and only if the induced map \(T_\ell(f) : T_\ell(A) \to T_\ell(B) \) on \(\ell \)-adic Tate modules is injective with finite cokernel, and equivalently if and only if \(V_\ell(f) : V_\ell(A) \to V_\ell(B) \) is an isomorphism. In such cases, prove that \(\deg f \) is not divisible by \(\ell \) if and only if \(T_\ell(f) \) is an isomorphism. (There are analogues for \(\ell = \text{char}(k) > 0 \), using Dieudonné modules.)

 (iii) The \textit{isogeny category} of abelian varieties over \(k \) has objects the abelian varieties over \(k \) and morphisms \(\text{Hom}^0(A,B) := \mathbb{Q} \otimes \mathbb{Z} \text{Hom}_k(A,B) \). Explain why this forms a category, prove that the “forgetful” functor from the category of abelian varieties over \(k \) to the isogeny category is faithful but not fully faithful, and that a map of abelian varieties is an isomorphism in the isogeny category if and only if it is an isogeny.

2. Let \(S \) be a scheme, \(X \) an \(S \)-scheme, and \(G \) an \(S \)-group scheme. Assume there is given a left action map \(G \times_S X \to X \). This action is called free if \(G(T) \) acts freely on \(X(T) \) for all \(S \)-schemes \(T \).

 (i) Prove that freeness is equivalent to the map \(G \times_S X \to X \times_S X \) defined by \((\gamma, x) \mapsto (\gamma x, x) \) being a monomorphism, and deduce that freeness is insensitive to fpqc base change. (Hint: in a category with fiber products, a map is a monomorphism if and only if its relative diagonal is an isomorphism.)

 (ii) Let \(X \) be a scheme locally of finite type over an algebraically closed \(k \), equipped with an action by a \(k \)-group \(G \) locally of finite type. For each \(x \in X(k) \), prove that the functor assigning to any \(k \)-scheme \(S \) the subgroup of \(g \in G(S) \) fixing \(x \) is represented by a closed \(k \)-subgroup \(G_x \), the \textit{isotropy group scheme} at \(x \). Explain why \(G_x \) naturally acts on the tangent space \(T_x(X) \) (viewed as an affine space over \(k \)), so the action map \(G_x \to \text{GL}(T_x(X)) \) defines a map of Lie algebras \(\text{Lie}(G_x) \to \mathfrak{g}(T_x(X)) \) (i.e., an action in the sense of Lie algebra representations of \(\text{Lie}(G_x) \) on \(T_x(X) \)).

 Prove that the action is free if and only if \(G(k) \) acts freely on \(X(k) \) and \(\text{Lie}(G_x) \) acts freely on \(T_x(X) \) for all \(x \in X(k) \) (i.e., nonzero elements of \(\text{Lie}(G_x) \) act without nonzero fixed points on \(T_x(X) \)).

 (iii) Assume \(G \to S \) is fpqc and \(G \) acts freely on \(X \). A \textit{quotient} of \(X \) by the \(G \)-action is the \(G \)-invariant fpqc map \(\pi : X \to \overline{X} \) such that \(G \times_S X \to X \times_S \overline{X} \) defined by \((g,x) \mapsto (gx,x) \) is an isomorphism. Prove that such a quotient, if it exists, is unique up to unique isomorphism, is initial among \(G \)-invariant maps from \(X \) to \(S \)-schemes, and retains the quotient property after base change to any \(S \)-scheme.

3. Let \(A \) be an abelian variety over \(k \), and \(G \) a \textit{finite} \(k \)-subgroup scheme of \(A \). This exercise proves the existence and uniqueness of a quotient abelian variety \(A/G \), and considers an important example.

 (i) Prove that up to unique isomorphism there is at most one pair \(\overline{A}, \pi \) consisting of an abelian variety \(\overline{A} \) and a surjective \(k \)-homomorphism \(\pi : A \to \overline{A} \) with \(G = \ker \pi \). Prove that if it exists then it is necessarily a quotient in the strong sense of Exercise 2(iii). Conversely, prove that if there is a quotient \(A/G \) in the strong sense of Exercise 2(iii) then it is necessarily an abelian variety. (Hint: a noetherian ring is regular if it admits a faithfully flat regular extension, by Theorem 23.7 of Matsumura CRT, and a \(k \)-algebra is finite type if it admits a faithfully flat extension of finite type over \(k \), by Prop. 9.1 in Exposé V of SGA3.)

 (ii) Choose \(n \in \mathbb{Z} - \{0\} \) killing \(G \) (e.g., the order of \(G \)), and consider the quotient mapping \([n]_A : A \to A \) that identifies \(A \) with \(A/A[n] \) (in particular, \(A/A[n] \) exists and is an abelian variety). Explain how this identifies the problem of existence of \(A/G \) in the sense of (i) with the quotient problem from Exercise 2(iii) for the action of the \(A \)-group \(G \times A \) on \(A \) viewed as an \(A \)-scheme via \([n]_A : A \to A \). The existence of quotients of free actions by finite flat group schemes on schemes affine (even finite!) over a noetherian base is solved in general by Theorem 4.1 in Exposé V of SGA3 (you can read §1–§4 there without the earlier exposés.)

 (iii) Let \(\mathcal{L} \) be an ample line bundle on \(A \), so \(K(\mathcal{L}) \) is a finite subgroup scheme of \(A \). Deduce that the dual abelian variety \(\hat{A} \) is naturally identified with the quotient \(A/K(\mathcal{L}) \). (In Mumford’s book, he develops from scratch a good theory of quotients of abelian varieties modulo finite subgroup schemes and then proves directly for ample \(\mathcal{L} \) that the quotient \(A/K(\mathcal{L}) \) satisfies the required properties to be a dual abelian variety. In this way he constructs the theory of the dual abelian variety without using the theory of Picard schemes.)