1. Let X be a scheme over a field k, and assume that $X(k)$ is dense in X (e.g., $k = k_s$ with X geometrically reduced and locally of finite type). Prove that $X(k)$ is “relatively schematically dense” in X in the following sense: for any k-scheme S, if a closed subscheme Z of X_S contains all sections in $X_S(S) = X(S)$ arising from $X(k)$ then $Z = X_S$.

2. Let $f : X \to S$ be a proper flat surjective map of schemes, with S locally noetherian, and assume that the geometric fibers of f are reduced and connected. Assume projectivity and/or noetherian hypotheses if you wish (but not needed).
 (i) Using the theory of cohomology and base change, prove that $\mathcal{O}_S = f_* \mathcal{O}_X$ via the natural map.
 (ii) Let \mathcal{L} be a line bundle on X. Prove that $\mathcal{L} \simeq f^*(\mathcal{N})$ for a line bundle \mathcal{N} on S if and only if $f_*(\mathcal{L})$ is invertible and the natural map $f^* f_*(\mathcal{L}) \to \mathcal{L}$ is an isomorphism (in which case $\mathcal{N} \simeq f_* \mathcal{L}$). Deduce that in such cases, the formation of $f_*(\mathcal{L})$ commutes with any base change on S.

3. Let Y be a normal locally noetherian separated scheme, and U a dense affine open in Y. Prove that $Y - U$ has pure codimension 1 in the sense that its generic points have codimension 1 in Y (i.e., local ring of Y at such points is 1-dimensional).

4. Let $X \to S$ be a map of schemes and $Z \subseteq Z'$ a containment of S-flat closed subschemes whose associated ideal sheaves are locally finitely generated. If $Z_s = Z'_s$ inside of X_s for all $s \in S$ then prove that $Z = Z'$ inside of X. (Hint: rename Z' as X, and use Nakayama’s Lemma.)

5. Let X be a smooth proper and geometrically connected curve of genus g over a field k such that $X(k) \neq \emptyset$, and let $P = \text{Pic}_{X/k}$ be its Picard scheme. We have seen in earlier homework that the k-group scheme P is smooth of dimension $\dim H^1(X, \mathcal{O}_X) = g$ over k and that P^0 is proper, so P^0 is an abelian variety of dimension g. In this exercise we identify $P^0(k)$ as a subgroup of $P(k) = \text{Pic}(X)$.
 (i) For any k-scheme S and section $x \in X(S) = X_S(S)$, prove that the quasi-coherent ideal sheaf of the closed subscheme $x : S \hookrightarrow X_S$ is an invertible sheaf whose local generators are nowhere zero divisors on \mathcal{O}_{X_S}.
 (ii) For a coherent sheaf \mathcal{F} on a proper k-scheme Y, recall that the Euler characteristic $\chi(\mathcal{F})$ is defined to be $\sum (-1)^i h^i(Y, \mathcal{F})$. For an invertible sheaf \mathcal{L} on X, prove that $\chi(\mathcal{L}^n) = d_{\mathcal{L}} \cdot n + (1 - g)$ for an integer $d_{\mathcal{L}}$; we call this integer the degree of \mathcal{L}. Likewise, for a Weil divisor $D = \sum n_i x_i$ on our curve X, define $\text{deg}(D) = \sum n_i [k(x_i) : k]$. Prove that both notions of degree are invariant under extension of the ground field, and that they coincide when $Y = X$ and $\mathcal{L} \simeq \mathcal{O}_X(D)$.
 (iii) Choose $e \in X(k)$, and define $X^g \to P$ by defining $X(S)^g \to P(S) = \text{Pic}(X_S)/\text{Pic}(S)$ for any k-scheme S to be
 $$\{(x_1, \ldots, x_g) \mapsto \mathcal{O}_{X_S}(x_1) \otimes \cdots \otimes \mathcal{O}_{X_S}(x_g) \otimes \mathcal{O}_{X^g}(e)^{\otimes (-g)}\}.$$ This map carries (e, \ldots, e) to $0 \in P^0(k)$, so by connectedness of X^g this map factors through a map $X^g \to P^0$ between proper k-schemes. Using the Riemann-Roch theorem for $X_{\overline{k}}$, prove that this latter map on \overline{k}-points hits exactly the line bundles on $X_{\overline{k}}$ of degree 0; don’t ignore the case $g = 0$.
 (iv) It is a general fact (proved in Ch. II, §5) that the Euler characteristic is locally constant for a flat coherent sheaf relative to a proper morphism of locally noetherian schemes. Deduce that there is a well-defined map of k-group schemes from P to the constant group \mathbf{Z} over $\text{Spec} \ k$ assigning to any point of $P(S)$ the locally constant function given by the fiberwise degree of the line bundle. Using that \mathbf{Z} as a k-scheme contains no nontrivial k-proper subgroups, prove that for any field K, $P^0(K)$ is the subgroup of degree-0 line bundles in $\text{Pic}(X_K)$. (This depends crucially on the hypothesis that $X(k) \neq \emptyset$; Grothendieck gave a way to define $P = \text{Pic}_{X/k}$ without such a hypothesis on X, and then $P^0(k)$ can fail to have this concrete description when $\text{Br}(k) \neq 1$.)