1. Motivation

This handout aims to establish in the general case two key features of the split case: the applicability of BN-pair formalism (a.k.a. “Tits systems”) and a theory of relative root groups which permits a refined formulation of the Bruhat decomposition (corresponding geometrically to the description of each locally closed Bruhat cell as an explicit product variety of a Borel subgroup against an affine space). We also use root groups to relate \(k \)-isotropic \(“k \)-simple factors” to irreducible components of \(k \Phi \). Due to examples that we have seen with both Weil restriction and special unitary groups in class, in the general case root groups can to have dimension larger than 1, even in the absolutely simple case.

In the split case, much of this was explained in the handout “Bruhat decomposition and Tits systems” from the previous course. Let’s recall the main argument concerning the refined Bruhat decomposition in the split case. Let \(G \) be a split connected reductive group over a field \(k \). Choose a split maximal torus \(T \) and a Borel \(k \)-subgroup \(B \). Let \(W = N_G(T)(k)/T(k) = W(\Phi(G,T)) \). The Bruhat decomposition gives

\[
G(k) = \coprod_{w \in W} B(k)n_wB(k)
\]

where \(n_w \in N_G(T)(k) \) is a choice of representative of \(w \). There is usually tremendous non-uniqueness in expressions \(bn_wb' \) for a given \(g \in G(k) \), so for computations and other purposes it is convenient to refine our description of these double cosets.

For any \(w \in W \), let \(\Phi_w = \{ a \in \Phi^+ \mid w^{-1}.a \in \Phi^+ \} \) and let \(\Phi'_w = \Phi^+ - \Phi^+_w \) be its complement. Choose an enumeration of \(\Phi^+ \) for which \(\Phi'_w \) appears before \(\Phi^+_w \). Thus,

\[
Un_w = \prod_{a \in \Phi'_w} U_a \times \prod_{a \in \Phi^+_w} U_an_w = \left(\prod_{a \in \Phi'_w} U_a \right) n_w \cdot \prod_{a \in \Phi^+_w} (n_w^{-1}U_ana_w).
\]

But \(n_w^{-1}U_ana_w = U_{w^{-1}.a} \subset U \) for \(a \in \Phi^+_w \), so

\[
Un_wU = \left(\prod_{a \in \Phi'_w} U_a \right) n_w \times U_a = \prod_{a \in \Phi'_w} U_a \times n_w \prod_{a \in \Phi^+_w} U_a.
\]

The same computation works on \(k \)-points, and if we include a factor of \(T \) (which normalizes \(U \) and is normalized by \(N_G(T)(k) \)) then we arrive at the description

\[
B(k)n_wB(k) = \prod_{a \in \Phi'_w} U_a(k) \times T(k)n_w \times \prod_{a \in \Phi^+_w} U_a(k)
\]

via multiplication inside \(G(k) \). This really is a direct product decomposition, since we can pass \(n_w \) all the way to the left to arrive at the equivalent description

\[
n_w \cdot \prod_{a \in \Phi'_w} U_a^{-1}(k) \times T(k) \times \prod_{a \in \Phi^+_w} U_a(k) \subset n_w(U^- \times T \times U)(k)
\]

inside a translate of the open cell associated to \((T,B) \).

In this description, the order of enumeration \(\Phi'_w \) might seem to matter in terms of the image of \(\prod_{a \in \Phi'_w} U_a(k) \) inside \(B(k) \). To explain why it is independent of the enumeration, we
shall apply Proposition 2.2.7 in “Pseudo-reductive groups” (whose proof rests on elementary properties of root systems): any closed set of roots Ψ in a (possibly non-reduced) root system Φ_0 is the intersection $\Phi_0 \cap A$ of Φ_0 with a subsemigroup A of the ambient \mathbb{Q}-vector space V generated by Φ_0, so any such Ψ is the set of roots in the subsemigroup of V generated by Ψ. This latter condition on a subset Ψ of Φ_0 is called being saturated (so any closed set of roots is saturated).

For any saturated set of roots Ψ in the reduced root system $k\Phi$, we will see in Proposition 3.3 that for general G (without a split hypothesis) the associated root groups U_a ($a \in \Psi$) directly span in any order a common unipotent smooth connected k-subgroup $U_\Psi \subset G$ (normalized by T). This rests on a “direct spanning” construction that has absolutely nothing to do with the theory of reductive groups.

We can summarize the refined Bruhat decomposition in the split case as

$$B(k)n_w B(k) = U_{\Psi_w}(k) \times T(k) \times U_{\Phi^+}(k),$$

where $U_\Psi := \prod_{a \in \Psi} U_a$ (multiplication in any order) for any saturated subset Ψ of $\Phi(G, T)$. As was noted in the handout “Bruhat decomposition and Tits systems”, $\# \Phi'_w$ is the length $\ell(w)$ of w relative to the set of reflections $\{r_a\}_{a \in \Delta}$ in $W(G, T)$ giving a Coxeter presentation, where Δ is the basis of Φ^+. This gives geometric meaning to the Bruhat cells $Bn_w B = A^0_k \times n_w B$ in the split case. A version of this in the general case is given on k-points in Corollary 3.7 using a direct spanning property on k-points, and it is crucial in many applications (such as the development of Bruhat–Tits theory).

2. Root groups and Tits systems

Now let G be an arbitrary connected reductive group over a field k, and let S be a maximal k-split torus. Let S_0 be the maximal k-split torus and $S' = (S \cap G')^0_{\text{red}}$ (where $G' := \mathcal{R}(G)$), so $S_0 \times S' \to S$ is an isogeny and under the decomposition $X(S)_{\mathbb{Q}} = X(S_0)_{\mathbb{Q}} \oplus X(S')_{\mathbb{Q}}$. $k\Phi = \Phi(G, S)$ spans $X(S')_{\mathbb{Q}}$ making $(X(S')_{\mathbb{Q}}, k\Phi)$ a root system. For the rest of the handout we may as well assume $k\Phi \neq \emptyset$, which is to say S is not central in G, as otherwise there is no content to anything that follows.

We begin by defining the root group $U_a \subset G$ associated to each $a \in k\Phi$. Beware that in general (unlike in the split case) this may have rather large dimension, and can even be non-commutative; we will discuss the precise structure of such U_a later. The crux of the matter is the following remarkably general construction that has nothing to do with reductive groups.

Proposition 2.1. Let G be a smooth connected affine k-group equipped with an action by a split k-torus S, and let $A \subseteq X(S)$ be a subsemigroup not containing 0. There exists a unique S-stable smooth connected k-subgroup $U_A(G)$ such that $\text{Lie}(U_A(G))$ is the span of the α-weight spaces for all $\alpha \in A \cap \Phi(G, S)$. This k-subgroup is unipotent and contains any S-stable smooth connected k-subgroup $H \subseteq G$ such that all S-weights on $\text{Lie}(H)$ occur in A.

Additional properties of $U_A(G)$ will be reviewed as the need arises below.

Proof. This is Proposition 3.3.6 in “Pseudo-reductive groups” (where the notation $H_A(G)$ is used, as it is not assumed there that $0 \notin A$, so $H_A(G)$ might not be unipotent).
For any $a \in X(S) - \{0\}$, let $\langle a \rangle$ be the semigroup consisting of positive integral multiples of a. For $a \in k\Phi$, $U_a := U_{\langle a \rangle}(G)$ is the smooth connected unipotent k-subgroup in G that is normalized by S and for which Lie(U_a) is the span of the weight spaces in Lie(G) for the weights in $\Phi(G, S)$ that are positive integral multiples of a. Moreover, U_a contains every smooth connected k-subgroup $H \subseteq G$ normalized by S such that S acts on Lie(H) only with weights that are positive integral multiples of a. In particular, $U_{2a} \subseteq U_a$ if $2a \in k\Phi$.

We call U_a the root group of G associated to $a \in k\Phi$. Here is a more concrete description of U_a. Let $\mathcal{Z}_a = \ker a$ (which might not be smooth if a is divisible in $X(S)$, and can happen when $k\Phi$ has irreducible factors of type C_n or type BC_n with $n > 1$) and let $G_a = Z_G(\mathcal{Z}_a)^0$. By the handout on “reductive centralizers”, G_a is a connected reductive k-subgroup of G (visibly containing S), and $\Phi(G_a, S)$ has rank 1: it consists of the roots that are integer multiples of a (since we used the centralizer of the entire kernel of a, not just $(\ker a)^0$).

Lemma 2.2. Inside G we have $U_a \subset G_a$.

Proof. The smooth connected root group U_a is normalized by S. We have to show that under the resulting S-action, the closed k-subgroup $\ker a$ acts trivially on U_a. Its effect on the span Lie(U_a) of the weight spaces inside \mathfrak{g} for the positive integral multiples of a in $k\Phi$ is certainly trivial. But rather generally, the action on a smooth connected affine group by a multiplicative type group is trivial when the action on the Lie algebra is trivial. This follows from a calculation on infinitesimal neighborhoods of the identity, using the complete reducibility of linear representations of multiplicative type groups; see the self-contained second paragraph of the proof of Corollary A.8.11 in “Pseudo-reductive groups”.

For $\lambda_a \in X_*(S)$ such that $\langle a, \lambda_a \rangle > 0$ we have $U_{G_a}(\lambda_a) \subseteq U_{U_a}(\lambda_a) = U_a$ inside G_a. This inclusion is between smooth connected k-groups, and it is an equality on Lie algebras (as $\Phi(G_a, S)$ consists of the integer multiples of a inside $k\Phi$, and Lie(U_a) is the span of the positive integral multiples of a in $k\Phi$). Thus, we get an equality as k-subgroups: $U_a = U_{G_a}(\lambda_a)$. In particular, if $H \subset G$ is a smooth closed k-subgroup normalized by S then $U_a \cap H = U_H(\lambda_a)$ is smooth and connected.

This dynamic description of U_a is compatible with any extension of the ground field (even though maximality of S is typically ruined by such extensions), so by using scalar extension to k_s we see that $(U_a)_{k_s}$ is normalized by $Z_G(S)(k_s)$ and hence U_a is normalized by $Z_G(S)$ for any $a \in k\Phi(G, S)$. Since $U_a = U_{G_a}(\lambda_a)$, the root group U_a is a k-split smooth connected unipotent group (Proposition 2.1.10 in “Pseudo-reductive groups”). When G is split, so $k\Phi$ is a reduced root system, we recover the notion of root group in the split theory.

The commutativity and vector group properties of the root groups will be explored later, but for now we wish to use root groups to establish a link with the notion of Tits system. Recall from the previous course:

Definition 2.3. A *Tits system* is a 4-tuple $(\mathcal{G}, B, N, \Sigma)$ where \mathcal{G} is an abstract group, B and N are subgroups, and $\Sigma \subseteq N/(B \cap N)$ is a subset such that the following four axioms are satisfied:

1. $B \cup N$ generates \mathcal{G} and $B \cap N$ is normal in N,
2. the elements of Σ have order 2 in the quotient $W := N/(B \cap N)$ and generate W,
(T3) for all $\sigma \in \Sigma$ and $w \in W$, $\sigma Bw \subseteq BwB \cup B\sigma wB$ (using any representatives for σ and w in N, the choices of which do not matter).

(T4) $\sigma B\sigma \not\subseteq B$ for all $\sigma \in \Sigma$ (which is equivalent to $\sigma B\sigma \neq B$, since $\sigma^2 = 1$ in W).

We refer the reader to §2 in Chapter IV of Bourbaki LIE for the basic properties of Tits systems. By Remark (1) in §2.5 of Chapter IV of Bourbaki LIE, Σ is uniquely determined by (\mathcal{G}, B, N).

Theorem 2.4 (Borel–Tits). Let $N = N_G(S)$, $Z = Z_G(S)$, and P a minimal parabolic k-subgroup of G containing S. Let $k\Delta$ be the basis of the positive system of roots $k\Phi^+ = \Phi(P, S)$, and let $R = \{r_a \mid a \in k\Delta\}$ be the associated set of simple positive reflections. The 4-tuple $(G(k), P(k), N(k), R)$ is a Tits system with Weyl group $kW (= N(k)/Z(k))$.

This is the standard Tits system associated to (G, S, P). Recall from our discussion in class that $P(k) \cap N(k) = Z(k)$, so $N(k)/(P(k) \cap N(k)) =: kW = W(k\Phi)$.

Proof. The Bruhat decomposition $G(k) = \coprod_{w \in kW} P(k)n_wP(k)$ implies axiom (T1). Moreover, the quotient group $N(k)/Z(k) = kW = W(k\Phi)$ is generated by R. This is axiom (T2). To prove axiom (T4), for $r = r_a \in R$ (with $a \in k\Delta \subset k\Phi$) it suffices to prove that $rP(k)r \neq P(k)$. Clearly rPr contains $rU_a r = U_{r(a)} = U_{-a}$, so it suffices to prove that $U_{-a}(k)$ is not contained in $P(k)$. We will prove $U_{-a} \cap P = 1$, so $U_{-a}(k) \cap P(k) = 1$, which does the job since $U_{-a}(k) \neq 1$ (as the unipotent smooth connected k-group U_{-a} is nontrivial and k-split).

Letting A be the subsemigroup of $X(S)$ consisting of negative integral multiples of a, so $U_{-a} = U_A(G)$, it follows from Proposition 3.3.10 in “Pseudo-reductive groups” that $U_{-a} \cap P = U_{A}(P)$ is a smooth connected k-subgroup of the k-split unipotent group U_{-a}. But its Lie algebra is trivial since $\Phi(P, S) = k\Phi^+$ does not contain any of the S-weights that occurs on U_{-a}, so $U_{-a} \cap P = 1$ as desired.

It remains to prove axiom (T3). That is, for $r := r_a$ (with $a \in k\Delta$) and $w \in kW$ we claim that

$$rP(k)\{w, rw\}P(k) \subseteq P(k)\{w, rw\}P(k).$$

This is given in the proof of 21.15 in the 2nd edition of Borel’s textbook on linear algebraic groups, and here we give a mild reformulation of that calculation.

Let $\lambda : GL_1 \to S$ be a 1-parameter k-subgroup such that $P = P_G(\lambda) = Z_G(\lambda) \ltimes U_G(\lambda)$, so the minimality of P implies that $Z_G(\lambda) = Z_G(S) = Z$ and $U_G(\lambda) = \mathcal{R}_{a,k}(P)$. Thus, $P = Z \ltimes \mathcal{R}_{a,k}(P)$ and $k\Phi^+ = \Phi(P, S) = (k\Phi)_{\lambda > 0} = (k\Phi)_{\lambda > 0}$, so $\langle a, \lambda \rangle > 0$. More generally, a k-root $b \in k\Phi$ is positive (i.e., it lies in $k\Phi^+$) if and only if $\langle b, \lambda \rangle > 0$. If necessary, replacing w with rw, we may (and we will) assume that $w^{-1}(a)$ is positive.

Now let $U = \mathcal{R}_{a,k}(P) = U_G(\lambda)$, so for $G_a := Z_G(\ker a)^0$ the root group U_a is equal to $U_{G_a}(\lambda) = G_a \cap U$. Let $S_a = (\ker a)^0_{\text{red}}$. As a is nondivisible in $k\Phi$ (since $a \in k\Delta!$), an element of $k\Phi$ is a rational multiple of a if and only if it is an integral multiple of a. Thus, the containment $G_a \subseteq Z_G(S_a)$ between smooth connected k-groups is an equality via comparison of their Lie algebras. Choose a 1-parameter k-subgroup $\lambda_a : GL_1 \to S_a$ such that $\langle b, \lambda_a \rangle > 0$ for all $b \in k\Delta - \{a\}$. Note that $\langle a, \lambda_a \rangle = 0$, so $G_a = Z_G(\lambda_a)$. Let $V = U_G(\lambda_a)$, so $P_G(\lambda_a) = Z_G(\lambda_a) \ltimes U_G(\lambda_a) = G_a \ltimes V$ and hence $U = U_a \ltimes V$. We also noted above that
Remark 2.5. Since $kW = W(k\Phi)$ acts simply transitively on the set of minimal parabolic k-subgroups of G containing S, if P is such a k-subgroup corresponding to a positive system of roots $k\Phi^+$ then for a suitable $w_0 \in kW$ the k-subgroup $w_0 \circ P$ corresponds to the positive system of roots $-k\Phi^+$. Writing $P = P_G(\lambda) = Z_G(\lambda) \ltimes U_G(\lambda)$ for some $\lambda \in X_*(S)$, we have $w_0 \circ P = P_G(-\lambda)$. Thus, $P \cap w_0 \circ P = Z_G(\lambda) = Z_G(S) =: Z$, so $Z(k) \subseteq \cap_{w \in kW} wP(k)w^{-1} \subseteq P(k) \cap w_0P(k)w_0^{-1} = Z(k)$; i.e., $Z(k) = \cap_{w \in kW} wP(k)w^{-1}$. For $N := N_G(S)$ we have $Z(k) = P(k) \cap N(k)$ due to the minimality of P, so $\cap_{n \in N(k)} nP(k)n^{-1} = P(k) \cap N(k)$. This says that the Tits system in Theorem 2.4 is saturated in the sense of Exercise 5(a) in §2 of Chapter IV in Bourbaki LIE. The property that $P(k)$ is a semidirect product of its subgroup $Z(k) = P(k) \cap N(k)$ against a nilpotent subgroup $U_G(\lambda)(k)$ says that the Tits system is also split.

In the handout “Bruhat decomposition and Tits systems” from the previous course, we saw that the connection to Tits systems yields striking simplicity results for $G(k)/Z_G(k)$ in the split simply connected case. The argument rested on an equality “$G(k) = G(k)^+$” which says that $G(k)$ is generated by the rational points of the split k-unipotent radicals of parabolic k-subgroups of G (or equivalently, just for the minimal parabolic k-subgroups, as any k-split solvable smooth connected k-subgroup is contained in such a P), and we proved this property in the split case but it is not true in general and its validity over global fields lies quite deep. Consequently, in this handout we do not focus on simplicity results, and instead demonstrate the power of the link with Tits systems via the following striking result.

Theorem 2.6. With notation as in Theorem 2.4, the following hold:

(i) There are $2^{|R|}$ subgroups of $G(k)$ containing $P(k)$, and any such subgroup equals $Q(k)$ for a unique parabolic k-subgroup Q containing P.

(ii) For parabolic k-subgroups Q and Q' of G, $Q \subseteq Q'$ if and only if $Q(k) \subseteq Q'(k)$.

Informally, this theorem says that “parabolic subgroups” of $G(k)$ relative to its Tits system structure (see §2.6 in Chapter IV of Bourbaki LIE for this terminology) are in inclusion-preserving bijective correspondence with the parabolic k-subgroups of G via the formation of rational points. Note that we allow the case that k is finite!

Proof. Since $(G(k), P(k), N(k), R)$ is a Tits system (with Weyl group $k W$), by Theorem 3(b) in §2.5 of Chapter IV in Bourbaki LIE, there is a natural bijection $X \mapsto G(k)_{X}$ from the set of subsets $X \subseteq R$ to the set of subgroups of $G(k)$ containing $P(k)$, so there are exactly $2^{\#R}$ subgroups of $G(k)$ containing $P(k)$. Explicitly, relative to the Bruhat decomposition $G(k) = \prod_{w \in k W} P(k) n_{w} P(k)$ for a choice of representative $n_{w} \in N(k)$ of each $w \in k W$, $G(k)_{X}$ is the union of the $P(k)$-double cosets indexed by the elements of the subgroup $k W_{X}$ of $k W$ generated by X. Note that the subgroup $G(k)_{X}$ is the unique subgroup of $G(k)$ containing $P(k)$ such that the image of $N(k) \cap G(k)_{X}$ in $k W$ is $k W_{X}$. (In particular, $k W_{X}$ determines X.) In general $k W_{X} \cap k W_{X'} = k W_{X \cap X'}$, so $G(k)_{X} \cap G(k)_{X'} = G(k)_{X \cap X'}$. It follows that if $G(k)_{X} \subseteq G(k)_{X'}$ then $G(k)_{X} = G(k)_{X \cap X'}$ and hence $X = X \cap X' \subseteq X'$.

Any smooth closed k-subgroup Q of G containing P is parabolic, and there are exactly $2^{\#R}$ such k-subgroups (as we saw in class, corresponding to subsets I of $k \Delta$, since $k \Delta$ is the quotient of Δ by the $*$-action). We shall now display them all. For each subset $I \subseteq k \Delta$, we fix a cocharacter $\lambda_{I} \in X_{*}(S)$ such that $\langle a, \lambda_{I} \rangle \geq 0$ for all $a \in k \Delta$, with equality if and only if $a \in I$. Define $P_{I} = P_{I}(k) = Z_{G}(\lambda_{I}) U_{G}(\lambda_{I})$. In view of how $k \Delta$ is defined in terms of P, by weight space computations in \mathfrak{g} we see that $P = P_{\emptyset}$ and $P_{I} \subseteq P_{J}$ when $J \subseteq I'$; in particular, $P \subseteq P_{I}$. We will prove that if $J \neq J'$ then $P_{I}(k) \neq P_{J'}(k)$ (so $P_{I} \neq P_{J}$). It would then follow that the collection $\{P_{I} \mid I \subseteq k \Delta\}$ consists of $2^{\#k \Delta} = 2^{\#R}$ parabolic k-subgroups of G containing P, and the collection $\{P_{I}(k) \mid I \subseteq k \Delta\}$ consists of $2^{\#R}$ subgroups of $G(k)$ containing $P(k)$. Hence, the former would be the collection of all parabolic k-subgroups of G containing P and the latter would be the collection of all subgroups of $G(k)$ containing $P(k)$, so (i) would be proved.

Let I, and let $N_{I} = N \cap P_{I} = N P_{I}(S)$. We have noted above that I is determined by the subgroup $k W_{I} \subseteq k W$ generated by $\{r_{a}\} \subseteq R$, so it suffices to show that the image of $N(k) \cap P_{I}(k) = N_{I}(k)$ in $k W$ is $k W_{I}$ (and then $P_{I} = G(k)_{I}$, due to the unique characterization of $G(k)_{X}$ noted above). This image $N_{I}(k)/Z(k)$ is the “relative Weyl group” $N P_{I}(S)(k)/Z P_{I}(S)(k)$ of (P_{I}, S), though P_{I} isn’t reductive for $I \neq k \Delta$. Let’s first show that the subgroup $W(Z_{G}(\lambda_{I}), S)(k) \subseteq k W$ is generated by $\{r_{a}\} \subseteq I$ (i.e., it coincides with $k W_{I}$). Due to how λ_{I} was defined (with $I \subseteq k \Delta$), the root system $k \Phi_{I} := \Phi(Z_{G}(\lambda_{I}), S)$ is the span of I inside $k \Phi$, with I moreover as a basis. Thus, $W(Z_{G}(\lambda_{I}), S)(k)$ is generated by reflections $\{r_{a}^{\prime}\} \subseteq I$. The natural inclusion $W(Z_{G}(\lambda_{I}), S)(k) \hookrightarrow k W$ inside $\text{GL}(X(S)_{\mathbb{Q}})$ carries r_{a}^{\prime} to r_{a} for each $a \in I$, due to the well-known fact that for any nonzero finite-dimensional vector space V over a field of characteristic 0 and any finite subgroup $F \subseteq \text{GL}(V)$, a reflection $r \in F$ is uniquely determined by the line that it negates.

We have shown that $k W_{I} \subseteq N_{I}(k)/Z(k)$ via the inclusion of $Z_{G}(\lambda_{I})$ into $P_{I}(k) = P_{I}$, and to prove equality it suffices to show that these finite groups have the same size. More specifically, using the natural identification of $Z_{G}(\lambda_{I})$ with the maximal reductive quotient $\overline{P}_{I} = P_{I}(\lambda_{I})/U_{G}(\lambda_{I})$ of P_{I} and the isomorphism of S onto its maximal k-split torus image \mathcal{S} in \overline{P}_{I}, to complete the proof of (i) it suffices to show that the natural
map \(N_I(k)/Z(k) \to W(\overline{P}_I, S)(k) \) is an isomorphism. The key point is that the inclusion \(N_I(k)/Z(k) \to W(P_I, S)(k) := (N_{P_I}(S)/Z_{P_I}(S))(k) \) is an equality. This is an analogue for \(P_I \) of what we know for \(G \), and the proof of that result for connected reductive groups was entirely formal up to the known fact that all maximal \(k \)-split tori of \(P_I \) are \(P_I(k) \)-conjugate (as \(P_I \) is a parabolic \(k \)-subgroup of the connected reductive \(G \)) and the following two facts:

Lemma 2.7. For any minimal parabolic \(k \)-subgroup \(P \) of \(P_I \) containing \(S \), \(N_{P_I}(S) \cap P = Z_{P_I}(S) \). Moreover, the minimal parabolic \(k \)-subgroups of \(P_I \) are \(P_I(k) \)-conjugate.

Proof. The first assertion is inherited from the same for \(P_I \) in place of \(P \) (as a parabolic \(k \)-subgroup of \(P_I \) is precisely a parabolic \(k \)-subgroup of \(G \) contained in \(P_I \), due to the parabolicity of \(P_I \)). For the second assertion, note that any parabolic \(k \)-subgroup of \(P_I \) must contain the normal split unipotent smooth connected \(k \)-subgroup \(U_G(\lambda_I) \). Thus, we get an inclusion-preserving bijection between the sets of parabolic \(k \)-subgroups of \(P_I \) containing \(S \) and those of the connected reductive \(\overline{P}_I = P_I/U_G(\lambda_I) \) containing the maximal \(k \)-split torus image of \(S \). Hence, the known \(k \)-rational conjugacy result for the reductive \(\overline{P}_I \) implies the same for \(P_I \) because \(P_I(k) \to \overline{P}_I(k) \) is surjective (as \(U_G(\lambda_I) \) is split unipotent). ■

We may now recast our problem in terms of finite étale \(k \)-groups rather than groups of \(k \)-points: we want \(N_I/Z \to W(\overline{P}_I, S) \) to be an isomorphism. This is a special case of a general fact having nothing to do with reductive groups:

Lemma 2.8. Let \(H \) be a smooth connected affine group over a field \(k \), \(U \) a normal unipotent smooth connected \(k \)-subgroup, and \(H' = H/U \). Let \(T \) be a \(k \)-torus in \(H \) and let \(T' \) be its image in \(H' \). The natural map \(N_H(T)/Z_H(T) \to N_{H'}(T')/Z_{H'}(T') \) between finite étale \(k \)-groups is an isomorphism.

Proof. This is Lemma 3.2.1 in “Pseudo-reductive groups” (which has slightly weaker hypotheses on \(\ker f \), but whose proof is self-contained relative to our situation). ■

To prove assertion (ii) in Theorem 2.6, consider arbitrary parabolic \(k \)-subgroups \(Q \) and \(Q' \) of \(G \) such that \(Q(k) \subseteq Q'(k) \). Fix a minimal parabolic \(k \)-subgroup \(P \) contained in \(Q \). By the conjugacy of minimal parabolic \(k \)-subgroups of \(G \), there exists \(g \in G(k) \) such that \(gPg^{-1} \subseteq Q' \). Hence, \(Q'(k) \) contains a \(G(k) \)-conjugate of \(P(k) \), so it is a “parabolic subgroup” of \(G(k) \) relative to the Tits system structure. But \(P(k) \) and \(gP(k)g^{-1} \) are contained in \(Q'(k) \), so \(g \in Q'(k) \) by Theorem 4(i) in §2.6 of Chapter IV of Bourbaki LIÉ. Thus, \(P \subseteq Q' \), so \(Q \) and \(Q' \) are parabolic \(k \)-subgroups containing the common minimal parabolic \(k \)-subgroup \(P \). But then \(Q \cap Q' \) is another such \(k \)-subgroup yet its \(k \)-points coincide with those of \(Q(k) \), so (i) implies that \(Q = Q \cap Q' \subseteq Q' \).

3. Structure of root groups and direct spanning

We begin by establishing that the root group \(U_a \) equipped with its \(S \)-action is a vector group with \(S \) acting through \(a \), except for possibly when \(2a \in k\Phi \). Even in this multipliable cases, we can say something useful.

Proposition 3.1. Let \(G \) be a connected reductive \(k \)-group, \(S \) a maximal \(k \)-split torus in \(G \), \(N = N_G(S) \), and \(Z = Z_G(S) \). Let \(k\Phi = \Phi(G, S) \). Choose \(a \in k\Phi \) and let \(U_{±a} \) be the root groups associated to ±\(a \).
If $2a \not\in k\Phi$ then U_a is a vector group admitting a unique linear structure relative to which the S-action is linear. If $2a \in k\Phi$ then $(U_a, U_a) \subseteq U_{2a}$, $U_{2a} \subset Z_{U_a}$, and U_a/U_{2a} is a vector group admitting a unique linear structure relative to which the S-action is linear. In such multipliable cases, the underlying k-scheme of U_a is isomorphic to an affine space.

For a nontrivial element $u \in U_a(k)$, the following properties are satisfied:

(i) There exist unique $u', u'' \in U_{-a}(k)$ such that $m(u) := u'u''u'$ normalizes S. The action of $m(u)$ on $X(S)$ is the reflection r_a, and moreover $u', u'' \not\in 1$.

(ii) For any field extension K of k and any $z \in Z_G(S)(K)$, if zu^{-1} lies in $U_a(k)$, then $zu'z^{-1}, zu''z^{-1} \in U_{-a}(k)$ and $m(zu^{-1}) = zm(u)z^{-1}$.

(iii) If $2a \not\in k\Phi$ then $u' = u''$, so each $a \in U_a(k)$ is a vector group in the non-multipliable case and that U_a/U_{2a} is a vector group in the multiple case, with these vector groups admitting a unique S-equivariant linear structure. In particular, in the multipliable case $U_a(U_{-a})$ ensures that if 2

Proof. The centralizer $Z_G(ker a)$ has reductive identity component and contains $U_{\pm a}$. Since $Z_G(S) \subseteq Z_G(ker a)$, so we may (and do) replace G with $Z_G(ker a)^0$. Now $k\Delta = \{a\}$, the Weyl group $k\mathcal{W}$ is a group of order 2 generated by r_a, and $P := Z \times U_{-a}$ is a minimal parabolic k-subgroup of G.

Since $k\Phi$ is a root system, the only positive integral multiple of a, other than a, which can be in $k\Phi$ is $2a$. By construction, $U_a = U_a(G)$ and $U_{2a} = U_{2a}(G)$, so Proposition 3.3.5 in “Pseudo-reductive groups” ensures that if $2a \in k\Phi$ then $(U_a, U_a) \subseteq U_{2a} \subseteq Z_{U_a}$; likewise, if $2a \not\in k\Phi$ then we similarly conclude that U_a is commutative. Lemma 3.3.8 in “Pseudo-reductive groups” implies that U_a is a vector group in the non-multipliable case and that U_a/U_{2a} is a vector group in the multiple case, with these vector groups admitting a unique S-equivariant linear structure. In particular, in the multipliable case U_a is a U_{2a}-torsor over the affine space U_a/U_{2a}, so since U_a is a vector group it follows (from the triviality of étale G_a-torsors over affine schemes) that $U_a \rightarrow U_a/U_{2a}$ admits a section and hence the k-scheme U_a is isomorphic to an affine space.

Now consider a nontrivial element $u \in U_a(k)$. Let $P' = r_a \mathcal{P}r_a = Z \times U_{-a}$ be the parabolic k-subgroup “opposite” to P. By the Bruhat decomposition,

$$G(k) = P(k) \cup (P(k)r_aP(k) = P(k) \cup U_{-a}(k)(N(k) - Z(k))U_{-a}(k).$$

Since $U_a(k) \cap P(k)$ is trivial, u must lie in $U_{-a}(k)(N(k) - Z(k))U_{-a}(k)$, and therefore we can find $u', u'' \in U_{-a}(k)$ and $n \in N(k) - Z(k)$ such that $u = u'u''u'$. Then $m(u) := u'u''u' = n \in N(k)$ and it maps onto r_a in the Weyl group $k\mathcal{W}$.

To see that u' and u'' are unique, we first note that for any $u', u'' \in U_{-a}(k)$ such that $n' := u'u''u' \in N(k)$, necessarily $n' \not\in Z(k)$ since otherwise we would have $u = u'^{-1}n'u''^{-1} \in U_{-a}(k)Z(k) = P(k)$, a contradiction because $u \in U_a(k)$ and $U_a \cap P = 1$. We have arranged that $G = F_a$, so n' must represent r_a. Since any two representatives of r_a in $N(k)$ coincide modulo $Z(k)$, the uniqueness of u' and u'' is reduced to the fact (from the theory of the open cell) that $U_{-a}(k)Z(k)U_a(k)$ is a direct product set (via multiplication) inside of $G(k)$.

To prove that $u', u'' \not\in 1$, we just have to show that no $n \in N(k) - Z(k)$ can have the form $u'u$ or uu' for $u' \in U_{-a}(k)$. If $u'u = n$ then $u' = nu^{-1} = (nu^{-1}n^{-1})n \in U_{-a}(k)n$, forcing $n \in U_{-a}(k)$, an absurdity since $u \not\in U_{-a}(k)$; the case $uu' = n$ is likewise ruled out, so we have proved assertion (i).
To prove assertion (ii), consider $z \in Z_G(S)(K)$ such that $zu^{-1}z$ lies in $U_a(k)$. Then $m(zu^{-1}) = u'_z(zu^{-1})u''_z$ for some $u'_z, u''_z \in U_a(k)$, so

$$z^{-1}m(zu^{-1})z = z^{-1}u'_zz \cdot u \cdot z^{-1}u''_zz = (z^{-1}u'_zz \cdot u^{-1})m(u)(u''_z\cdot z^{-1}u''_zz).$$

Hence,

$$(m(u)^{-1} \cdot z^{-1}m(zu^{-1})z)(u''_z \cdot z^{-1}u''_zz)^{-1} = m(u)^{-1}(z^{-1}u'_zz \cdot u^{-1})m(u).$$

The element on the left side of this equality lies in $P(K)$, whereas the element on the right side lies in $U_a(K)$. Therefore, the elements on both sides are 1. This implies that $zu''z^{-1} = u'_z$, $zu''z^{-1} = u''_z$ and $m(zu^{-1}) = zm(u)z^{-1}$, so we have proved (ii).

We will now prove assertion (iii), so consider a non-multipliable root a. The root group U_a is commutative for such a, and if $\text{char}(k) = p > 0$ then U_a is also p-torsion. If $\text{char}(k) = 2$ then the elements u', u and u'' are of order 2, so $u''uu' = m(u)^{-1}$ and hence from the uniqueness of u' and u'' we infer that $u' = u''$. This implies that $m(u)^{-1} = m(u)$, so $m(u)^2 = 1$. Now assume $\text{char}(k) \neq 2$, so there exists $s \in S(k)$ such that $a(s) = -1$. Conjugating the equation $u'uu'' = m(u)$ by s, we obtain $u'^{-1}u''^{-1}u''^{-1} = sm(u)s^{-1}$, which in turn implies that $u'u'' = sm(u)s^{-1}u^{-1}$. From the uniqueness of u' and u'' we deduce that $u' = u''$, so $sm(u)^{-1}s^{-1} = m(u)$. Therefore, $m(u)^2 = m(u)sm(u)^{-1}s^{-1} \in S(k)$. Allowing $\text{char}(k)$ to be arbitrary, since $m(u) = uu'uu'$ we see that

$$u' \cdot (m(u)^{-1}u'm(u)) \cdot (m(u)^{-1}um(u)) = m(u)$$

with $m(u)^{-1}u'm(u) \in U_a(k)$ and $m(u)^{-1}um(u) \in U_a(k)$ because $m(u)$ normalizes S and acts as r_a on $X(S)$. Thus, $m(m(u)^{-1}u'm(u)) = m(u)$ and $u' = m(u)^{-1}um(u)$.

\[\square \]

Remark 3.2. Let G be a smooth connected affine k-group, S a maximal k-split torus of G, and P a minimal parabolic k-subgroup of G containing S. Let $N = N_G(S)$ and $Z = Z_G(S)$. By minimality of P we have $P = P_G(\lambda) = U_G(\lambda) \times Z_G(\lambda)$ with $Z_G(\lambda) = Z$ and $R_{a,k}(P) = U_G(\lambda)$ for some $\lambda \in X_*(S)$.

Let $G(k)^+$ be the normal subgroup of $G(k)$ generated by the k-rational points of the k-split unipotent radicals of the parabolic k-subgroups of G. It is immediate from the preceding proposition that $G(k)^+ \cap N(k)$ maps onto the k-Weyl group $kW = N(k)/Z(k)$. Now let G be a subgroup of $G(k)$ that contains $G(k)^+$, $\mathcal{N} := N(k) \cap G$, and $\mathcal{B} := P(k) \cap G$. Then \mathcal{N} maps onto kW. As $U_G(\lambda)(k) \subset \mathcal{B}$, we see that $P(k) = U_G(\lambda)(k) \times Z(k) = Z \mathcal{B}(k)$. Moreover, for all $n \in \mathcal{N}$ we have $P(k)nP(k) = \mathcal{B}n \mathcal{B}Z(k)$ and $\mathcal{G} \cap (P(k)nP(k)) = \mathcal{B}n \mathcal{B}$. It is seen from this, using the Bruhat decomposition of $G(k)$, that $G(k) = \mathcal{B}Z(k)$. Now it is easily deduced from Theorem 2.4 and Remark 2.5 that the 4-tuple $(\mathcal{G}, \mathcal{B}, \mathcal{N}, R)$, with R as in Theorem 2.4, is a Tits system with Weyl group kW. We shall call this Tits system a **standard** Tits system in G. Its rank (i.e., the cardinality of R) is equal to the k-rank of $\mathcal{G}(G)$.

The equality $G(k) = \mathcal{G} \cdot Z(k)$ implies that all maximal k-split tori (resp., all minimal parabolic k-subgroups) of G are conjugate to each other under \mathcal{G}.

Recall that a subset Ψ of $\Phi(G, S)$ is **saturated** if the subsemigroup A of $X(S)$ spanned by Ψ does not contain 0 and $\Psi = A \cap k\Phi$. By Proposition 2.2.7 in “Pseudo-reductive groups”, for any positive system of roots $k\Phi^+$ in $k\Phi$, any closed set of roots $\Psi \subseteq k\Phi^+$ is saturated.
The two most interesting examples of saturated (even closed) subsets of \(k \Phi \) for our purposes are obtained as follows. For any 1-parameter \(k \)-subgroup \(\lambda : \text{GL}_1 \to S \) we can take \(\Psi \) to be \(k \Phi \lambda > 0 \), and for any linearly independent \(a, b \in k \Phi \) we can take \(\Psi \) to be the set \((a, b)\) of elements in \(k \Phi \) of the form \(ma + nb \) for positive integers \(m \) and \(n \).

We seek to construct a smooth connected unipotent \(k \)-subgroup \(U_\Psi \) attached to any saturated \(\Psi \), and to describe it as a direct span (in any order!) of suitable root groups. However, if \(k \Phi \) is not reduced and \(c, 2c \in \Psi \) then we have to be careful not to use both \(U_c \) and \(U_{2c} \) in such a direct spanning (as \(U_{2c} \subset U_c \)).

Proposition 3.3. Let \((G, S, k \Phi)\) be as above.

1. For any saturated subset \(\Psi \) of \(k \Phi \) there is a unique \(S \)-stable smooth connected unipotent \(k \)-subgroup \(U_\Psi \) such that \(\text{Lie}(U_\Psi) \) is the span of the subspaces \(\text{Lie}(U_c) \) for \(c \in \Psi \). It is normalized by \(Z_G(S) \), and directly spanned in any order by the subgroups \(U_c \) for \(c \in \Psi \) that are not divisible in \(\Psi \).

2. For any parabolic \(k \)-subgroup \(P \) of \(G \) containing \(S \), the subset \(\Psi \) of \(k \Phi \) consisting of \(a \in k \Phi \) such that \(-a \notin \Phi(P, S)\) is saturated, and \(\mathcal{R}_{a, k}(P) = U_\Psi \).

Proof. To prove assertion (1), let \(A \) be the subsemigroup of \(X(S) \) generated by \(\Psi \). Then as \(\Psi \) is saturated, \(0 \notin A \) and \(A \cap \Phi(G, S) = \Psi \). Let \(U_\Psi = U_A(G) \) as in Proposition 2.1, which ensures (since \(0 \notin A \)) that \(U_\Psi \) is a smooth connected unipotent \(k \)-subgroup. To prove that \(Z_G(S) \) normalizes \(U_\Psi \), we note that the description of \(U_A(G) \) makes sense without reference to the maximality of \(S \) as a \(k \)-split torus in \(G \), and is compatible with any extension of the ground field. Thus, using scalar extension to \(k_s \) implies that \((U_\Psi)_{k_s} \) is normalized by \(Z_G(S)(k_s) \), and hence \(U_\Psi \) is normalized by \(Z_G(S) \). The rest of assertion (1) follows easily from Theorem 3.3.11 of “Pseudo-reductive groups” applied to the smooth connected solvable \(k \)-group \(U_\Psi = U_A(G) \) equipped with its natural action by \(S \) (using the disjoint union decomposition \(\Psi = \bigsqcup \Psi_i \) where the \(\Psi_i \) are the non-empty intersections of \(\Psi \) with half-lines in \(X(S)_Q \)).

To prove assertion (2), we fix a \(\lambda \in X_s(S) \) such that \(P = P_G(\lambda) \). Thus, \(\mathcal{R}_{a, k}(P) = U_G(\lambda) \). But \(U_\Psi = U_G(\lambda) \) for \(\Psi = k \Phi \lambda > 0 \) by uniqueness in (1), so (2) is proved.

For independent \(a, b \in k \Phi \), if we apply Proposition 3.3(1) to the saturated subset \(\Psi = (a, b) \) then the construction of \(U_\Psi \) and Proposition 3.3.5 in “Pseudo-reductive groups” yield:

Corollary 3.4. We have

\[(U_a, U_b) \subseteq U_{(a, b)} = \prod_i U_{c_i} \]

where the direct spanning is taken with respect to an arbitrary enumeration \(\{c_i\} \) of the set of non-divisible elements of \((a, b) \).

Remark 3.5. For \(a \in k \Phi \), let \(M_a = m(u)Z_G(S) \), where \(u \) is any nontrivial element of \(U_a(k) \) and the element \(m(u) \in N_G(S)(k) \) is as in Proposition 3.1. It is easy to see using Proposition 3.1 and Corollary 3.4 that \((Z_G(S)(k), (U_a(k), M_a(k)))_{a \in \Phi} \) is a generating root datum (\emph{donnée radicielle génératrice}) in \(G(k) \) in the sense of Bruhat and Tits (see (6.1.1) in their initial big IHES paper on what came to be called Bruhat–Tits theory). This is very useful in the calculations that underlie Bruhat–Tits theory.
Remark 3.6. It is natural to wonder (at least out of idle curiosity) if the reduced root system $k\Phi'$ consisting of non-multipliable roots in the k-root system $k\Phi$ coincides with the root system of a split connected reductive k-subgroup of G containing S as a maximal torus. The affirmative answer is provided by Theorem 7.2 in the Borel–Tits IHES paper on reductive groups (and another proof will be given in the next printing of “Pseudo-reductive groups”).

As an application of the direct spanning of the group U_Ψ for saturated Ψ as in Proposition 3.3, we can prove:

Corollary 3.7. Let P be a minimal parabolic k-subgroup of G containing S, and $k\Phi^+ = \Phi(P, S)$. For $w \in kW = W(k\Phi)$, define

$$\Phi_w^+ = \{a \in k\Phi^+ \mid w^{-1}.a \in k\Phi^+\}, \quad \Phi'_w = k\Phi^+ - \Phi_w^+.$$

For a representative $n_w \in N_G(S)(k)$ of $w \in kW$, we have

$$P(k)n_wP(k) = U_{\Phi'_w}(k) \times Z_G(S)(k) \times n_wU_{k\Phi^+}(k).$$

In view of the direct spanning property of the groups $U_{\Phi'_w}$ and $U_{k\Phi^+}$, this is proved by the exact same computation as reviewed in the split case in §1. Of course, unlike in the split case, in the general case there is no combinatorial recipe for the dimensions of the affine spaces $U_{\Phi'_w}$ or $U_{k\Phi^+}$ since the dimensions of the root groups U_a are unknown.

4. Simple factors

In the split semisimple case, the irreducible components of the root system correspond bijective to the (almost) simple “factors” that pairwise commute and generate all smooth connected normal k-subgroups. We seek an analogue in the general case, but must be attentive to the fact that some factors might be anisotropic. As a preliminary step, we need two lemmas.

Lemma 4.1. Let G be a connected reductive k-group and N a smooth connected normal k-subgroup of G (so N is connected reductive). Let S be a maximal k-split torus of G, and T a maximal k-torus of G. Then $S_N := (S \cap N)^0_{\text{red}}$ is a maximal k-split torus of N, and $T \cap N$ is a maximal torus of N.

Proof. By the $G(k)$-conjugacy of all such S and the normality of N in G, the dimension of S_N is independent of S. Thus, for the assertion concerning S it suffices to find one S for which S_N is maximal as a k-split torus in N. Pick a maximal k-split torus S' in N, so it lies in a maximal k-split torus S'' of G. Clearly $S''_N = S'$ by maximality of S' in N, so we are done.

Next, we show that $T \cap N$ is a maximal k-torus of N. For this purpose we may extend scalars so that $k = \overline{k}$, and then we can apply the preceding case to see that $(T \cap N)^0_{\text{red}}$ is a maximal torus of N. It then remains to check that $T \cap N$ is smooth and connected. Since $T = Z_G(T)$, clearly $T \times (T \cap N)$ is the centralizer of T in $T \times N$. But a torus centralizer in a smooth connected affine group is always smooth and connected, so we are done.

Lemma 4.2. For any smooth connected normal k-subgroup M in a connected reductive k-group H and for any maximal k-torus T in M, there is an almost direct product decomposition
\[T = T' \cdot Z \text{ where } T' = T \cap \mathcal{D}(M) \text{ is a maximal } k\text{-torus in } \mathcal{D}(M) \text{ and } Z \text{ is the maximal subtorus of } T \text{ that centralizes } M. \]

Proof. By Galois descent we may assume \(k = k_s \), so by the split theory such \(M \) is generating by some of the (commuting) simple factors of \(H \) and a subtorus of the maximal central \(k\)-torus of \(H \). Since \(T \) compatibly decomposes as an almost direct product of the maximal central torus and maximal tori in each of the simple factors, the assertion is evident. \(\blacksquare \)

Proposition 4.3. Let \(G \) be a connected reductive \(k\)-group, \(S \) a maximal \(k\)-split torus, and \(k\Phi = \Phi(G,S) \). Let \(S' \) be the maximal \(k\)-split torus \((S \cap \mathcal{D}(G))^{0}_{\text{red}} \) of \(\mathcal{D}(G) \). Assume \(S' \neq 1 \), or equivalently \(S \) is non-central in \(G \). For each irreducible component \(\Psi \) of \(k\Phi \), let \(N_{\Psi} \) be the nontrivial smooth connected \(k\)-subgroup generated by \(\{U_a\}_{a \in \Psi} \).

1. The \(k\)-group \(G \) is generated by \(Z_G(S) \) and the \(N_{\Psi} \)’s.
2. Each \(N_{\Psi} \) is semisimple and normal in \(G \).
3. The maximal \(k\)-split torus \(S_{\Psi} := (S \cap N_{\Psi})^{0}_{\text{red}} \) of \(N_{\Psi} \) is nontrivial, \(\prod_{\Psi} S_{\Psi} \to S' \) is an isogeny, and the \(k\)-root system of \(N_{\Psi} \) with respect to \(S_{\Psi} \) is naturally identified with \(\Psi \) via the natural isomorphism \(X(S')_Q \simeq \prod_{\Psi} X(S_{\Psi})_Q \).
4. Each \(k\)-isotropic normal connected \(k\)-subgroup of \(G \) contains some \(N_{\Psi} \).
5. No \(N_{\Psi} \) contains a nontrivial smooth connected proper normal \(k\)-subgroup.

Proof. Each \(k\)-subgroup \(N_{\Psi} \) is clearly normalized by \(Z_G(S) \), and Lie algebra considerations imply that \(G \) is generated by \(Z_G(S) \) and the \(N_{\Psi} \)’s. For a choice of \(\Psi \) and roots \(a \in \Psi \) and \(b \in \Phi - \Psi \), \(U_a \) commutes with \(U_b \) by Proposition 3.4 since \(ma + nb \notin k\Phi \) for any positive integers \(m \) and \(n \). Since \(G \) is generated by \(Z_G(S) \) and the root groups \(\{U_b\}_{b \in \Phi} \), we see that \(N_{\Psi} \) is a (smooth connected nontrivial) normal \(k\)-subgroup of \(G \), so \(N_{\Psi} \) is reductive.

Applying Lemma 4.2 to \(G \) and its normal subgroup \(N_{\Psi} \) and a maximal \(k\)-torus \(T \) of \(G \) containing \(S \), the almost direct product decomposition of \(T \) passes to one on maximal split subtori (with the help of Lemma 4.1) we see that \(S \) is an almost direct product of the maximal \(k\)-split torus \((S_{\Psi} \cap \mathcal{D}(N_{\Psi}))^{0}_{\text{red}} \) of \(\mathcal{D}(N_{\Psi}) \) and the maximal \(k\)-subtorus of \(S \) that centralizes \(N_{\Psi} \). Thus, \((S,U_a) = (S_{\Psi},U_a) \subseteq \mathcal{D}(N_{\Psi}) \) for all \(a \in \Psi \), yet \((S,U_a) = U_a \) by the known \(S\)-equivariant structure of \(U_a \) in the non-multipliable case and of \(U_{2a} \) and \(U_a/U_{2a} \) in the multiplier case (see Proposition 3.1), so \(N_{\Psi} \) is perfect (thus semisimple) and \(S_{\Psi} \neq 1 \).

We have established (1), (2), and the first assertion in (3).

Recall that a smooth connected normal \(k\)-subgroup of a smooth connected normal \(k\)-subgroup of \(G \) is normal in \(G \) (as follows from the general structure of smooth connected normal subgroups of connected reductive groups over \(k \), via irreducible components of root systems). Thus, a minimal nontrivial smooth connected normal \(k\)-subgroup \(N \) of \(G \) cannot contain a smooth connected proper \(k\)-subgroup that is normal in \(N \).

Let \(N \) be a non-commutative smooth connected normal \(k\)-subgroup of \(G \), so the \(k\)-subgroup \(\mathcal{D}(N) \) of \(N \) is nontrivial and perfect and normal in \(G \). Thus, if such an \(N \) is minimal among the non-commutative smooth connected normal \(k\)-subgroups of \(G \) then it is perfect and hence is contained in \(\mathcal{D}(G) \) (which is itself perfect). But \(S \) is an almost direct product of \(S' \) and the maximal \(k\)-split central torus of \(G \). Each \(N_{\Psi} \) lies in \(\mathcal{D}(G) \) by perfection, so the \(k\)-root system of \(G \) with respect to \(S \) is identified with that of \(\mathcal{D}(G) \) with respect to \(S' \). We may therefore replace \(G \) with \(\mathcal{D}(G) \) (and \(S \) with \(S' \neq 1 \)), so \(G \) is semisimple and \(S' = S \). In
particular, by the split theory over k_s, every nontrivial normal smooth connected k-subgroup of G is semisimple.

Let $\{N_i\}_{i \in I}$ be the set of minimal nontrivial smooth connected normal k-subgroups of $G = \mathcal{D}(G)$, so every N_i is semisimple. By the split theory over k_s, such N_i are almost direct products of $\text{Gal}(k_s/k)$-orbits among the minimal normal smooth connected k_s-subgroups of G_{k_s}. This description over k_s implies the following properties if the N_i’s: they pairwise commute, the product homomorphism

$$
\pi : N = \prod_{i \in I} N_i \longrightarrow G
$$

is a central isogeny, and every normal smooth connected k-subgroup of G is generated by $\{N_i\}_{j \in J}$ for a unique subset $J \subseteq I$. Note also that no N_i contains a nontrivial smooth connected proper normal k-subgroup, due to the minimality of N_i in G. We shall eventually see that the k-isotropic N_i’s are precisely the N_Ψ’s.

For $i \in I$, let $S_i = (S \cap N_i)_{\text{red}}^0$, a maximal k-split torus of N_i. Let I^2 be the set of $i \in I$ such that N_i is k-anisotropic. Thus, $S_i = 1$ precisely for $i \in I^2$, and the pair (N_i, S_i) has a non-empty k-root system for $i \in I - I^2$ (since otherwise the nontrivial split torus S_i is central in the semisimple N_i, an absurdity). We claim that S is an isogenous quotient of the maximal k-split torus $\prod_{i \in I - I^2} S_i$ of N. Choose a maximal k-torus T of G containing S, so by Lemma 4.1 we see that $T_i := T \cap N_i$ is a maximal k-torus of N_i that contains S_i. The product $\prod T_i$ is a maximal k-torus of N, so its image in $G = \pi(N)$ is a maximal k-torus of G. This forces $\prod T_i \rightarrow T$ to be surjective, so the maximal split k-subtorus $\prod_{i \in I} S_i = \prod_{i \in I - I^2} S_i$ of $\prod T_i$ maps onto the maximal split k-subtorus S of T.

The isogeny $\prod_{i \in I - I^2} S_i \rightarrow S$ implies that: $N_i \subseteq Z_G(S)$ for every $i \in I^2$, π induces an injective homomorphism of $X_\ast(\prod_{i \in I - I^2} S_i) = \prod_{i \in I - I^2} X_\ast(S_i)$ into $X_\ast(S)$ whose image is a subgroup of finite index, and $I - I^2$ is non-empty. Thus, for any subset $J \subseteq I^2$, the k-subgroup $N_J := \langle N_j \rangle_{j \in J}$ is k-anisotropic (because we can apply the preceding considerations to N_{J^2} in the role of G to deduce that N_{J^2} is k-anisotropic).

For any $\lambda \in \prod_{i \in I - I^2} X_\ast(S_i)$, the restriction of π to $U_N(\lambda)$ is an isomorphism onto $U_G(\pi \circ \lambda)$ since the kernel of π is central (forcing $\ker \pi \subseteq Z_N(\lambda)$). Hence, the set of root groups of G relative to S is the (disjoint) union of the set of root groups of N_i relative to S_i over all $i \in I - I^2$. Thus, Φ is the direct sum of the non-empty k-root systems $\Phi_i := \Phi(N_i, S_i)$ for $i \in I - I^2$ compatibly with the decomposition $X(S)_Q = \prod_{i \in I - I^2} X(S_i)_Q$.

We claim that for each $i \in I - I^2$, the k-root system Φ_i in $X(S_i)_Q \neq 0$ is irreducible. Granting this, $\{\Phi_i\}_{i \in I - I^2}$ is the set of irreducible components of the root system $k \Phi$ in the Q-vector space $X(S)_Q = \prod_{i \in I - I^2} X(S_i)_Q$ and (by minimality) the nontrivial perfect normal k-subgroup N_{Φ_i} of N_i must exhaust N_i for each $i \in I - I^2$. This would establish (3) and (4), as well as (5). Thus, we can replace (G, S) with the k-isotropic (N_{i_0}, S_{i_0}) for each $i_0 \in I - I^2$ separately. Now the k-isotropic connected semisimple G has no nontrivial smooth connected normal k-subgroup apart from itself. In such cases it suffices to prove that the non-empty root system $k \Phi$ is irreducible.

Let Ψ be an irreducible component of $k \Phi$; our aim is to prove that $\Psi = k \Phi$. Since N_Ψ is a nontrivial smooth connected normal k-subgroup of G, $N_\Psi = G$. Suppose there exists
$b \in k\Phi - \Psi$, so the nontrivial smooth connected unipotent k-group U_b centralizes $N_\Psi = G$ and hence is central in G. This contradicts that G is reductive, so $\Psi = k\Phi$. ■

The preceding proof yields immediately:

Corollary 4.4. Assume G is semisimple. Let $\{\Phi_i\}$ be the set of irreducible components of $k\Phi$, and let $\{N'_j\}$ be the set of k-anisotropic minimal nontrivial normal connected semisimple k-subgroups of G. The multiplication homomorphism

\[
\prod N'_j \times \prod N_{\Phi_i} \to G
\]

is a central isogeny, and every normal connected semisimple k-subgroup N of G is an almost direct product among the N'_j's and the N_{Φ_i}'s.

The main point of this corollary is that the isotropic minimal nontrivial normal connected semisimple k-subgroups can be constructed out of root groups arising from specific irreducible components of $k\Phi$.