
Math 249B. Nilpotence of connected solvable groups

1. Motivation and examples

In abstract group theory, the descending central series {Ci(G)} of a group G is defined recursively
by C0(G) = G and Ci+1(G) = (G,Ci(G)) for i ≥ 0 (so C1(G) is the derived group, but for i > 1
typically Ci(G) is much larger than the ith term of the derived series). This is a decreasing chain
of normal (even characteristic) subgroups. One says that G is nilpotent if Ci(G) = 1 for i � 0.
As with solvability (using the derived series), nilpotent is inherited by subgroups, quotients, and
extensions. Note that if G is nilpotent and nontrivial, then the last nontrivial term Ci0(G) in the
descending central series satisfies (G,Ci0(G)) = 1, which is to say that Ci0(G) is a nontrivial central
subgroup of G. In particular, in general Ci(G)/Ci+1(G) is a central subgroup of G/Ci+1(G).

It is a classical fact that a finite group is nilpotent if and only if it is the direct product of its
Sylow subgroups. The reason for the “nilpotent” terminology is undoubtedly due to the following
example:

Example 1.1. Let U be a unipotent linear algebraic group over a field k. The group U(k) is
nilpotent. Indeed, since we may choose a k-subgroup inclusion of U into the standard strictly
upper triangular subgroup Un in GLn for some n, we may assume U = Un. Writing U = 1 + Nn

where Nn is the affine space of strictly upper triangular nilpotent n×n matrices, it is easy to check
that the subgroups Ui(k) := 1 + Nn(k)i satisfy (Ui(k), Uj(k)) ⊂ Ui+j(k) for all i, j ≥ 1. Hence,
(U(k), Uj(k)) ⊂ U1+j(k) for all j ≥ 1, so by induction we see that Ci(U(k)) ⊂ Ui(k) for all i ≥ 1.
But Nn(k)n = 0, so Un(k) = 1. Hence, Cn(U(k)) = 1.

We know from the previous course that if H,H ′ are smooth closed k-subgroups of a smooth finite
type k-group G, there exists a unique smooth closed k-subgroup (H,H ′) ⊂ G such that for every al-
gebraically closed extension K/k the subgroup (H,H ′)(K) ⊂ G(K) coincides with (H(K), H ′(K)).
In particular, much as with the derived series {D i(G)} we can define the descending central series
{C i(G)} recursively via C 0(G) = G and C i+1(G) = (G,C i(G)) for i ≥ 0. Computation with
k-points shows that each C i(G) is normal in G,

The noetherian condition on G implies that the descending chain {C i(G)} of closed k-subgroups
stabilizes for some large i; we denote this final term as C∞(G). For any algebraically closed field
K/k, the descending central series of G(K) stabilizes at C∞(G)(K). Hence, G(K) is nilpotent for
all K/k if and only if it is nilpotent for one K/k, and this is equivalent to the condition C∞(G) = 1.
For this reason, we say that G is nilpotent if C∞(G) = 1. Applying Example 1.1 on k-points, we
arrive at:

Proposition 1.2. A unipotent linear algebraic group over a field is nilpotent.

In general a connected solvable linear algebraic group need not be nilpotent. For example,
consider G = Gm n Ga, the standard semi-direct product (using the Gm-scaling action on Ga);
this is a Borel subgroup of PGL2. It is not nilpotent since C 1(G) = D(G) is the unipotent radical
U = Ga and (G,U) = U (so C∞(G) = U). In §3, we will see that this example illustrates the
“only” obstruction to nilpotence in the connected solvable case. However, we first need to digress
and discuss an important property of unipotent group actions that was not addressed in the previous
course.
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2. Unipotent orbits

In general, over an algebraically closed field the orbits of a linear algebraic group G acting on
a non-empty affine variety are locally closed, and the minimal-dimensional orbits are closed. But
when G is unipotent, something remarkable happens:

Proposition 2.1. Let U be a unipotent linear algebraic group over a field k, and X a quasi-affine
k-scheme of finite type equipped with an action by U . The U -orbits U.x for x ∈ X(k) are closed.

In the special case U = Ga, this has a simple proof: we choose a projective closure X of X, so
the orbit map U → X through x0 ∈ X(k) uniquely extends to a map P1 → X. This latter map has
closed image, so restricting it over the open X ⊂ X gives that U has closed image except possibly
when P1 lands inside X. But since X is quasi-affine, in such exceptional cases the image of P1 is
a point, so the orbit map is constant. The general case does not seem to easily reduce to this case
(e.g., by using a composition series of U), so unipotence has to be exploited in some other way (via
its representation-theoretic consequences: Lie–Kolchin).

Proof. This result is proved as 4.10 in Borel’s textbook, but his proof seems to have a small
discrepancy that we clarify below. First, we recall two equivalent ways to define the notion of
“quasi-affine scheme”: by EGA II, 5.1.2, if S is an arbitrary quasi-compact scheme then it is
equivalent that the natural map S → Spec(O(S)) is an open immersion and that S is a quasi-
compact open subscheme of an affine scheme. Such schemes are called quasi-affine. By EGA II,
5.1.9, if S is finite type over a ring R then it is quasi-affine if and only if it is an open subscheme
of an affine R-scheme of finite type (the “classical” definition of quasi-affineness). We will use the
“abstract” criterion in terms of open subschemes of Spec(O(S)) to circumvent the unclear step in
4.10 in Borel’s book; note that even if S is finite type over a field k, O(S) is generally not finitely
generated over k.

Define Z ⊂ X to be the Zariski closure of the locally closed orbit U.x of U through x, and let
Z ′ denote the Zariski closure of Z under the open immersion j : X → X ′ := Spec(O(X)) (so the
affine scheme X ′ has coordinate ring k[X ′] equal to O(X); typically X ′ is not of finite type over
k). Clearly F := Z −U.x is closed in the quasi-affine X, and we seek to prove that it is empty. Let
J ⊂ k[Z ′] be the radical ideal of elements that vanish on F , which is to say that it is the ideal of
the Zariski closure F ′ of the reduced scheme F under the open immersion j : X → X ′. The k-point
x in Z ′ does not belong to F ′ (as may be seen in the open subscheme X of X ′ which meets F ′ in
F ), so the k-point x is not in the zero scheme of J on the k-scheme X ′. Hence, there exists f ∈ J
such that f(x) ∈ k×. In particular, J 6= 0.

The U -action on X canonically extends to an action on the affine scheme X ′ because for any
k-algebra R the coordinate ring R⊗kO(X) of X ′R is naturally identified with the R-algebra O(XR)
of global functions on the base change XR of the quasi-affine k-scheme X (since X is quasi-compact
and separated over k, and R is k-flat). Here, we are using the functorial notion of “action” for a
k-group scheme on an arbitrary affine k-scheme, as was introduced in the February 5 lecture of the
previous course. But F and Z are U -stable closed subschemes of X, so their Zariski closures F ′

and Z ′ in X ′ are U -stable (since the formation of this Zariski closure commutes with base change
to any k-algebra R, due to the k-flatness of R).

It follows from 12.1.1 of the February 5 lecture of the previous course (applied to the affine k-
scheme Z ′ which may not be of finite type!) that the k-algebra k[Z ′] is exhausted by a directed union
of finite-dimensional k-subspaces Vα stable under the U -action. (The “error” in Borel’s argument
is that he works throughout with Z rather than Z ′, whereas it is Z ′ that is affine and Z is only
quasi-affine, so he does not address the “algebraicity” of the action of U on k[Z ′]; our functorial
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arguments took care of this issue, since the February 5 lecture of the previous course was designed
to apply to actions on arbitrary affine k-schemes without finiteness hypotheses.) Since J 6= 0, by
choosing α sufficiently large we obtain Jα := J

⋂
Vα 6= 0. Thus, Jα is a nonzero finite-dimensional

algebraic representation space for the unipotent linear algebraic group U . Any such representation
can be upper triangularized over the ground field, by Lie–Kolchin, so JUα 6= 0. That is, we obtain
a nonzero U -invariant h ∈ J ⊂ k[Z ′]. The restriction of h to U.x is equal to the constant h(x) ∈ k,
and by the schematic density of U.x in Z (and of Z in Z ′) it follows that h = h(x) ∈ k. But h 6= 0,
so h ∈ k×. This says that the ideal J of the closed set F ′ in the affine scheme Z ′ meets k×, so F ′

is empty and hence F is empty. �

3. Characterization of nilpotence

Let G be a solvable connected linear algebraic group over a field k, and T ⊂ G a maximal k-torus.
Thus, Gk = Tk n Ru(Gk). Clearly this semi-direct product is a direct product if and only if T is

central in G (as we may check centrality over k), in which case G is certainly nilpotent. Indeed,
in such cases C i(G)k = C i(Ru(Gk)) for all i > 0, and this vanishes for large i since Ru(Gk) is

unipotent. Even in the general (connected) solvable case, we at least have C 1(G)k = D(G)k ⊂
Ru(Gk), so C i(G) is unipotent for i ≥ 1.

Theorem 3.1. The k-group G is nilpotent if and only if T is central in G.

Proof. We have proved the implication “⇐” above. The converse is rather more difficult to prove.
We may and do assume k = k, and we let U = Ru(G). The key point is to prove a general
commutator result for connected solvable groups that has nothing to do with nilpotence. To
formulate this, consider t ∈ T (k) and the commutator morphism ct : U → U defined by u 7→
(t, u) = (tut−1)u−1. This is the left t-translate of the orbit map for U through t under its conjugation
action on G. Hence, by Proposition 2.1, ct(U) is a closed integral subscheme of U . It then makes
sense to consider the scheme endomorphism ct : ct(U) → ct(U). We claim that this is always
an isomorphism. Once this is proved, it follows that ct(U) = cnt (U) ⊂ C n(G) for all n ≥ 1, so
ct(U) ⊂ C∞(G). Hence, if G is nilpotent then ct(U) = 1 for all t ∈ T (k), which is exactly the
assertion that T centralizes U and so is central in G.

Now we turn our attention to verifying that ct : ct(U)→ ct(U) is an isomorphism of schemes in
the general connected solvable case. The proof given in 9.3(3) of Borel’s textbook (which considers
the weaker property of bijectivity on k-points) involves a long chain of reasoning for which it seems
hard (at least for me) to get much intuition beyond checking that it works. But there is a very
illuminating proof in characteristic 0 (to be explained below), and we will use a nontrivial result of
Tits to show that the same technique can be adapted to work in positive characteristic.

First, we explain the toy example in any characteristic that motivates believing that ct : ct(U)→
ct(U) is an isomorphism (and explains why we work with ct(U) in the first place): supposeG = TnV
where the semi-direct product is taken with respect to a linear representation of T on a vector
space V . In such cases V decomposes as a direct sum ⊕Vλ of eigenspaces relative to the semisimple
endomorphism defined by the action of t on V (recall that k = k), and ct acts on V as multiplication
by λ − 1 on Vλ for each λ. Hence, ct(V ) = ⊕λ 6=1Vλ, so obviously ct : ct(V ) → ct(V ) is an
automorphism of the variety ct(V ) (as it is multiplication by λ − 1 on each Vλ with λ 6= 1). The
idea in general is to find a characteristic composition series of U that reduces the problem to the
toy example. The subtlety is that ct is generally not a homomorphism when U is not commutative,
so an arbitrary T -equivariant composition series of U (e.g., the derived series) usually is ill-suited
to carrying out a dimension induction.
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To reduce the general case (in any characteristic) to the case with commutative U , we shall use
the descending central series. We may assume U 6= 1 and that the general isomorphism property
for ct on ct(U ) is known for all T -actions on unipotent connected linear algebraic k-groups U
(commutative or not) when dim U < dimU . Granting the commutative case, we may assume
that U is not commutative. Since U is nilpotent (Proposition 1.2), the final nontrivial term U ′ in
the descending central series of U is a central connected linear algebraic subgroup U ′ of U with
U ′ ⊂ C 1(U) = D(U) 6= U . Consider the resulting short exact sequence

1→ U ′ → U
q→ U ′′ → 1

in which U ′ and U ′′ each have strictly smaller dimension than U . This is T -equivariant due to the
“characteristic” property of U ′ in U (more precisely, U ′ is stable under all k-automorphisms of U ,
and we can check T -equivariance by computing with k-points).

Since U ′ is commutative, the morphism c′t : U ′ → U ′ is a homomorphism (namely, c′t(u
′) = t.u′−u′

in additive notation, using the T -action on U ′ defined by conjugation). By dimension induction, c′t
restricts to an automorphism of the central subgroup c′t(U

′) in U . In view of the definition of the
morphism of k-schemes ct : U → U , it factors through the central quotient map q : U → U ′′; this
corresponds to the map σ in the following commutative diagram:

U
q //

ct

��

U ′′

c′′t
��

σ

zz
ct(U) q

// c′′t (U
′′)

By hypothesis c′′t restricts to an isomorphism c′′t (U
′′) ' c′′t (U

′′), so composing its inverse with
σ|c′′t (U ′′) defines a map s : c′′t (U

′′)→ ct(U) that is a section to the natural map of integral algebraic

k-schemes q : ct(U) → c′′t (U
′′). This latter map is invariant under translation by the central

subgroup ct(U)
⋂
U ′, so by multiplication we get a natural T -equivariant isomorphism of schemes

h : (ct(U)
⋂
U ′)× c′′t (U ′′)→ ct(U).

In particular, this scheme isomorphism implies that the affine algebraic k-group scheme ct(U)
⋂
U ′

is smooth and connected (and visibly unipotent).
The isomorphism h intertwines ct on ct(U) with the direct product map c′t×c′′t on the source. By

dimension induction we know that c′′t restricts to an automorphism of c′′t (U
′′), so the automorphism

property for ct on ct(U) is equivalent to the property that ct restricts to an automorphism of the
smooth connected commutative affine k-group U ′t := ct(U)

⋂
U ′. Clearly c′t(U

′) ⊂ U ′t , and by
dimension induction we know that c′t is an automorphism of c′t(U

′), so the reduction to the case of
commutative U is reduced to the following lemma:

Lemma 3.2. The inclusion c′t(U
′) ⊂ U ′t of k-groups is an equality.

Proof. In view of the smoothness and connectedness of these k-groups, it is equivalent to compare
their Lie algebras (inside Lie(U)). Let V = Lie(U), and let AdU : T → GL(V ) denote the adjoint
representation arising from the T -conjugation action on U , so Lie(ct) = AdU (t) − id on V . Note
that AdU (t) is a semisimple automorphism, due to the algebraicity of AdU . Thus, we may form
the eigenspace decomposition V =

⊕
Vλ for AdU (t), so Lie(ct) acts as λ− 1 on each Vλ. It follows

that the image of Lie(ct) is
⊕

λ 6=1 Vλ, but a priori this image is merely contained in Lie(ct(U)). The
obstruction to equality here is the problem of surjectivity of the tangent map at the identity e for
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ct : U → ct(U). In other words,

Tane(ct(U)) = (Tane(ct(U))
⋂
V1)⊕ (⊕λ 6=1Vλ).

By similar reasoning with V ′ = Lie(U ′) and its eigenspaces V ′λ = V ′
⋂
Vλ relative to AdU ′(t) =

AdU (t)|V ′ , the image of Lie(c′t) is
⊕

λ 6=1 V
′
λ. But c′t : c′t(U

′) → c′t(U
′) is an isomorphism by the

dimension induction, so the image of Lie(c′t) coincides with Lie(c′t(U
′)). We thereby get the con-

tainment

Lie(c′t(U
′)) ⊂ Lie(U ′t) = Tane(ct(U))

⋂
V ′ = (Tane(ct(U))

⋂
V ′1)⊕ (⊕λ6=1V

′
λ)

= (Tane(ct(U))
⋂
V ′1)⊕ Lie(c′t(U

′)).

It therefore remains to show that Tane(ct(U))
⋂
V ′1 = 0, or more specifically that ct : U → ct(U) is

surjective on tangent spaces at the identity. We shall prove that this morphism is smooth.
Since t is fixed, rather than work with ct we may apply left translation by t−1 to express the

problem in terms of the orbit morphism U → G defined by u 7→ ut−1u−1. More precisely, t−1ct(U)
is the (reduced) locally closed image of the orbit morphism, and we know from our study of
orbit morphisms in the previous course (see 18.1.1, especially its proof) that an orbit of a linear
algebraic group under an action on an affine algebraic scheme (such as the U -action on G through
conjugation) is identified with the fppf quotient modulo the stabilizer scheme of the point through
which the orbit is being taken. That is, t−1ct(U) is identified with the quotient scheme U/ZU (t−1)
modulo the U -centralizer of t−1. More specifically, U → t−1ct(U) is faithfully flat with fibers that
are translates of the stabilizer scheme ZU (t−1), so provided that ZU (t−1) is smooth we can conclude
that ct : U → ct(U) is fppf with smooth fibers, so it is a smooth morphism and therefore surjective
on tangent spaces at all k-points.

Now the problem is rather more concrete: if H is a linear algebraic subgroup of a linear algebraic
group G over a field k (such as U ⊂ G above) and if s ∈ G(k) is semisimple (such as t−1 above)
and normalizes H then we claim that the centralizer scheme ZH(s) = H

⋂
ZG(s) is smooth. To

prove this, we shall express the problem in terms of the smooth (possibly disconnected!) subgroup
M generated by s (i.e., the Zariski closure of 〈s〉 in G). Note that M normalizes H, and ZH(s) =
ZH(M). Also, the identity component M0 is a torus and M/M0 has finite order not divisible by
char(k). Indeed, by choosing a k-subgroup inclusion G ↪→ GLn and extending scalars to k so that
s diagonalizes, this becomes an elementary assertion about diagonal matrices. Our problem now
has nothing at all to do with G; it is a special case of the next lemma. �

Lemma 3.3. Let M be a smooth commutative affine group over a field k such that M0 is a torus
and M/M0 has order not divisible by char(k). For any action by M on a smooth k-scheme Y , the
scheme-theoretic fixed locus YM is smooth.

This is proved as Lemma 3.2 in the handout “Applications of Grothendieck’s theorem on Borel
subgroups”. Now we may assume U is commutative, so ct : U → U is a homomorphism (as we
noted above for U ′). Now assume char(k) = 0, so by Lemma 2.3 (and the discussion immediately
following it) in the handout “Applications of Grothendieck’s theorem on Borel subgroups”, the
group U is a power of Ga and upon fixing an isomorphism U ' V := Gn

a the resulting T -action
on V is linear (i.e., commutes with the diagonal Gm-scaling action on V ). Thus, in characteristic
0 we have reduced the general problem to the toy example with linear representations of tori that
was solved at the outset in any characteristic.

Now assume char(k) = p > 0. How can we adapt the preceding argument to work? The first
problem is to get to the case when U is isomorphic to Gn

a as k-groups (without dwelling on whether
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this isomorphism makes the T -action on U appear linear). Even though U is commutative, if it is
not p-torsion then there is no such k-group isomorphism (e.g., the group functor W2 of length-2
Witt vectors over k-algebras is an extension of Ga by Ga, but W2 is not p-torsion). But we can
pass to the p-torsion case rather easily, as follows. Since U is commutative, the map ct : U → U
is a homomorphism. Hence, to prove the isomorphism property for ct on ct(U) it suffices to treat
the successive quotients of a T -equivariant composition series for U by smooth connected closed
subgroups. The composition series {U [pi]} is characteristic and has p-torsion successive quotients,
but the torsion subgroup schemes U [pi] may fail to be smooth or connected. Instead, we use the
characteristic composition series {pi(U)} whose terms are smooth and connected. In this way, we
may also arrange that U is p-torsion, so by Lemma B.1.10 in “Pseudo-reductive Groups” it follows
that U is a power of Ga.

It remains, with char(k) = p > 0, to relate an abstract semi-direct product TnV with V ' Gn
a to

the special case when the T -action on V appears linear under some k-group isomorphism V ' Gn
a .

Here again, the main difficulty was solved by Tits: he proved the remarkable result that V = V T×V ′
where V ′ is a T -stable smooth connected k-subgroup admitting a k-group isomorphism V ′ ' Gn′

a

under which the T -action on V ′ becomes linear! This is Theorem B.4.3 in “Pseudo-reductive
Groups”. Visibly ct(V ) = ct(V

′), so we may replace V with V ′ to once again reduce to the solved
toy case of a linear action. This completes the proof of Theorem 3.1. �

The following corollary is loosely analogous to the fact that a finite group is nilpotent if and only
if it is the direct product of its Sylow subgroups.

Corollary 3.4. Let G be a nilpotent connected solvable linear algebraic k-groups. The maximal
k-torus T is unique, and the natural homomorphism Tk ×Ru(Gk)→ Gk is an isomorphism.

Proof. By Theorem 3.1, T is central in G and so it is the only maximal k-torus in G (as Tk is

maximal in Gk and is invariant under G(k)-conjugation). The direct product isomorphism expresses

the structure of connected solvable linear algebraic k-groups in view of the centrality of Tk. �

It is not true over imperfect k, even in the commutative case, that Ru(Gk) descends to a k-
subgroup of G. That is, the direct product description of Gk in Corollary 3.4 cannot be descended
over k when k is imperfect. A counterexample is the Weil restriction G = Rk′/k(Gm) for a nontrivial
finite purely inseparable extension k′/k. This is a group of dimension [k′ : k] > 1 for which

G(ks) = k′s
× has no nontrivial p-torsion but the evident 1-dimensional k-torus Gm ⊂ G is maximal

(because G/Gm is killed by the [k′ : k]-power map, as may be checked on ks-points and hence
is unipotent). The absence of nontrivial ks-rational p-power torsion shows that this G cannot
contain a nontrivial connected unipotent linear algebraic k-subgroup U (as otherwise U(ks) would
be infinite and p-power torsion inside G(ks)).


