Math 248A. Homework 4

Read the handout on examples of vertical factorization.

1. Let A be a Dedekind domain with fraction field F and let F'/F be a finite separable extension. Let A' be the integral closure of A in F'. We assume that F'/F is Galois with Galois group Γ.

 (i) Prove that the action of Γ on F' carries A' back into itself and that the Γ-invariant elements in A' are exactly the elements of A. Also show that for any $\gamma \in \Gamma$ and maximal ideal p' of A', $\gamma(p')$ is a maximal ideal of A'. (We say that the maximal ideal $\gamma(p')$ is a Γ-conjugate of p'.)

 (ii) Let $\mathfrak{P}_1, \ldots, \mathfrak{P}_s$ and $\mathfrak{Q}_1, \ldots, \mathfrak{Q}_s$ be two finite sets of pairwise distinct maximal ideals of A' such that every Γ-conjugate of a \mathfrak{P}_i is a \mathfrak{P}_j and every Γ-conjugate of a \mathfrak{Q}_i is a \mathfrak{Q}_j. Use weak approximation to construct $x' \in A'$ such that $\gamma(x') \in \prod_i \mathfrak{P}_i$ for all $\gamma \in \Gamma$ but $\gamma(x') \notin \mathfrak{Q}_j$ for all $\gamma \in \Gamma$ and for all j.

 (iii) Let p be a nonzero prime ideal of A, and let $\{p'_1, \ldots, p'_j\}$ be the finite set of primes of A' over A, with $p A' = \prod p'_i$; let $f_i = [A'/p'_i : A/p]$ be the associated residue-field degrees. Prove that the action of Γ on A' permutes the set of p'_i's, and that if γ carries p'_i to p'_j then $e_i = e_j$ and γ induces an isomorphism $A'/p'_i \cong A'/p'_j$ as extensions of A/p (so $f_i = f_j$).

 (iv) Prove that the action of Γ on the set of p'_i's is transitive, so in fact $p A' = (\prod p'_i)^c$ with a common ramification degree $e = e_i$ for all i and a common residue field degree $f = f_i$ for all i. (Hint: Suppose that the set of p'_i's is not a single Γ-orbit, and use (ii) to construct $x' \in A'$ such that $N_{F'/F}(x') = \prod_{\gamma \in \Gamma} \gamma(x') \in A$ lies in the p'_i's from one Γ-orbit but not in any of the p'_i's from some other Γ-orbit. Check that $N_{F'/F}(x') \in p$ and deduce a contradiction.)

2. Let K/Q be a quadratic field with discriminant D, and let $p \in \mathbb{Z}$ be a prime. Let \mathcal{O}_K be the ring of integers of K. The following extends Exercise 3 in Homework 3.

 (i) If p is odd, prove that $p\mathcal{O}_K$ is prime (that is, $p\mathbb{Z}$ is inert in \mathcal{O}_K) if and only if $p \nmid D$ with D a nonsquare modulo $p\mathbb{Z}$, that $p\mathcal{O}_K = p_1p_2$ is a product of two distinct primes (that is, $p\mathbb{Z}$ is split in \mathcal{O}_K) if and only if $p \nmid D$ with D a square modulo $p\mathbb{Z}$, and that $p\mathcal{O}_K = p^2$ (that is, $p\mathbb{Z}$ is ramified in \mathcal{O}_K) if and only if $p | D$.

 (ii) Give analogous criteria for $p = 2$.

 (iii) Use the method of proof of Exercise 3 in Homework 3 to explicitly factor $p\mathbb{Z}$ in the rings of integers $\mathbb{Z}[(\sqrt{7})]$ and $\mathbb{Z}[(1 + \sqrt{-15})/2]$ (with respective discriminants $D = 28$ and -15) for all $p \in \{2, 3, 5, 7, 11\}$, expressing each prime ideal in the form (p, θ). Later methods will show that neither of these rings is a PID (or you can try to directly verify that specific prime ideals are not principal).

 (iv) Using quadratic reciprocity, determine all primes p that are split in $\mathbb{Z}[(\sqrt{11})]$.

3. Let A be a Dedekind domain, with fraction field F. The following uses Exercise 5 from Homework 3.

 (i) Let I and I' be nonzero ideals of A. Prove that the natural map $I \otimes_A I' \to A$ induced by multiplication is an isomorphism onto II'. (use localization and functoriality to reduce to the case of discrete valuation rings).

 (ii) Let M be a finitely generated and torsion-free A-module, and let $M_F = F \otimes_A M$. Define the dual module to be $M^\vee = \text{Hom}_A(M, A)$, so this is again finitely generated and torsion-free. Prove that $(M^\vee)_F$ is naturally identified with the F-dual space to M_F, and use localization at maximal ideals to prove that the natural map $M \otimes_A M^\vee \to A$ defined by $m \otimes \ell \mapsto \ell(m)$ is an isomorphism if $\dim_F M_F = 1$.

 (iii) Let $\text{Pic}(A)$ denote the set of isomorphism classes $[M]$ of finitely generated and torsion-free A-modules M such that $\dim_F M_F = 1$. Prove that every nonzero ideal I of A satisfies these conditions on M, and that the operation of tensor product gives $\text{Pic}(A)$ a natural structure of commutative group (called the class group of A, or the Picard group of Spec A in the language of schemes) with identity $[A]$ and with inversion $- [M] = [M^\vee]$. Prove that every element of $\text{Pic}(A)$ has the form $[I]$ for a nonzero ideal I of A, with $[I] = [I']$ if and only if $I = cI'$ for some $c \in F^\times$. Deduce that the group $\text{Pic}(A)$ is trivial if and only if A is a PID.

 (iv) We define a fractional ideal of A to be a finitely generated nonzero A-submodule \mathcal{I} of F, and two fractional ideals \mathcal{I} and \mathcal{I}' of A are linearly equivalent if $\mathcal{I} = c\mathcal{I}'$ for some $c \in F^\times$. The product of two fractional ideals \mathcal{I} and \mathcal{I}' of A is defined to be

 \[\mathcal{I} \mathcal{I}' = \{ y \in F \mid y = x_1x'_1 + \cdots + x_nx'_n, \ x_i \in \mathcal{I}, x'_i \in \mathcal{I}' \}. \]
why is this a fractional ideal? Prove that every fractional ideal of A is linearly equivalent to a nonzero ordinary ideal of A, that the isomorphism $F \otimes_F F \simeq F$ induced by multiplication induces an isomorphism $\mathcal{I} \otimes_A \mathcal{I}' \simeq \mathcal{I} \mathcal{I}'$, and that

$$\mathcal{I}^{-1} \overset{\text{def}}{=} \{ x \in F \mid x \mathcal{I} \subseteq A \}$$

is a fractional ideal that is naturally identified with the dual module \mathcal{I}^\vee. Deduce that Pic(A) may be described using only the classical language of fractional ideals of A (without mentioning tensor products or dual modules): it is the monoid of fractional ideals up to linear equivalence, with group law given by the product as above and with inversion given by \mathcal{I}^{-1} as above.

4. (optional) Let A be a Dedekind domain. If I and I' are ideals in A, we say I divides I' if $I' = IK$ for an ideal K of A (so all ideals divide (0)).

(i) If I and J are ideals in A, prove that $I + J$ is the unique smallest ideal that divides I and J.

(ii) Using weak approximation, prove that every ideal in A admits one or two generators.

5. (optional) Let I, I', J be nonzero ideals of A. Prove that if $I \oplus J$ and $I \oplus J'$ are abstractly isomorphic as A-modules then $[J] = [J']$ in Pic(A). (Hint: Prove that the natural A-linear map $I \otimes_A J \rightarrow \wedge^2(I \oplus J)$ defined by $x \otimes y \mapsto (x, 0) \wedge (0, y)$ is an isomorphism by using localization to reduce to the case when A is a discrete valuation ring. You must of course show that the exterior power really is torsion-free.)