1. Let p be a positive prime in \mathbb{Z}.
 (i) Prove that if $p \equiv 3 \bmod 4$ then p remains prime in $\mathbb{Z}[i]$.
 (ii) Assume $p \equiv 1 \bmod 4$. Using cyclicity of \mathbb{F}_p^\times, deduce that -1 is a square in \mathbb{F}_p^\times and hence $p|(x^2 + 1)$ in \mathbb{Z} for some $x \in \mathbb{Z}$.
 (iii) For any nonzero $n \in \mathbb{Z}$, show that the elements $n + i, n - i \in \mathbb{Z}[i]$ are not divisible (in $\mathbb{Z}[i]$) by an element of \mathbb{Z} not in \mathbb{Z}^\times. Conclude via (ii) and the UFD property of $\mathbb{Z}[i]$ that if $p \equiv 1 \bmod 4$ then p cannot be irreducible in $\mathbb{Z}[i]$.
 (iv) Assume $p \equiv 1 \bmod 4$. Use norms and (iii) to prove that $p = \pi\overline{\pi}$ for an irreducible $\pi \in \mathbb{Z}[i]$ (with $\pi \notin \mathbb{Z}$) that must have norm p, and infer that $p = a^2 + b^2$ for nonzero integers $a, b \in \mathbb{Z}$ that are unique up to ordering and signs.
 (v) (optional) Prove that $\mathbb{Z}[(1 + \sqrt{-3})/2]$ is Euclidean, and use arithmetic in this ring to study representatibility of primes in the form $a^2 + ab + b^2$, including uniqueness aspects.

2. Let $d \in \mathbb{Z}$ be a nonzero squarefree integer with $d > 1$. Let $K = \mathbb{Q}(_{\sqrt{d}})$ and let \mathcal{O} be its ring of integers. Let us grant Dirichlet’s unit theorem, so $\mathcal{O}^\times / \{\pm 1\}$ is infinite cyclic. A fundamental unit of K is a unit $\xi \in \mathcal{O}^\times$ such that it reduces to a generator in $\mathcal{O}^\times / \{\pm 1\}$ (so the fundamental units are $\pm \xi$ and $\pm 1/\xi$). If an embedding $K \hookrightarrow \mathbb{R}$ is chosen, then the unique fundamental unit > 1 is often called “the” fundamental unit (relative to the chosen embedding). There is a close relationship between Pell’s equation and fundamental units, as you will work out below, but some care is required because a fundamental unit may have norm -1 and (if $d \equiv 1 \bmod 4$) may not even lie in $\mathbb{Z}[_{\sqrt{d}}]$.

 (i) Find a quadratic field for which the ring of integers is $\mathbb{Z}[_{\sqrt{d}}]$ and there is a unit with norm -1 (so the fundamental unit has norm -1, whatever it may be). Note that no such example is possible if $d \equiv 3 \bmod 4$, or more generally if -1 is not a square modulo d. Explain the relationship between fundamental units and Pell’s equation when $d = 2, 3 \bmod 4$; in particular, derive the classical structure of the solution set to Pell’s equation by using the unit theorem. Upon embedding K into \mathbb{R}, prove that “the” fundamental unit (or its square when the fundamental unit has norm -1) corresponds to the solution (x, y) to Pell’s equation (so $x, y \geq 1$) with small y-coordinate. (As best I can tell, for $d \equiv 2 \bmod 4$ the only way to determine if there exists a fundamental unit with norm -1 is to grind out the continued fraction of \sqrt{d} in accordance with (iii) below.)

 (ii) Find $d \equiv 1 \bmod 4$ such that the fundamental unit in $\mathcal{O}_K = \mathbb{Z}[(1 + \sqrt{d})/2]$ does not lie in $\mathbb{Z}[_{\sqrt{d}}]$, and prove in general that if $\alpha \in \mathcal{O}_K$ does not lie in $\mathbb{Z}[_{\sqrt{d}}]$ then $\alpha^2 \notin \mathbb{Z}[_{\sqrt{d}}]$! However, this is about as bad as it gets. Construct an isomorphism

 $$\mathcal{O}_K \simeq \mathbb{Z}[X]/(X^2 - X + (1 - d)/4)$$

 and use this to infer that $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbb{F}_4$ (resp. $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbb{F}_2 \times \mathbb{F}_2$) as rings when $d \equiv 5 \bmod 8$ (resp. $d \equiv 1 \bmod 8$). Since $\mathbb{Z}[_{\sqrt{d}}] = \mathbb{Z} + 2\mathcal{O}_K$, conclude via inspecting the structure of $(\mathcal{O}_K/2\mathcal{O}_K)^\times$ that if $d \equiv 1 \bmod 8$ then a fundamental unit of \mathcal{O}_K must lie in $\mathbb{Z}[_{\sqrt{d}}]$, and that if $d \equiv 5 \bmod 8$ then the cube of any unit must lie in $\mathbb{Z}[_{\sqrt{d}}]$. Upon embedding K into \mathbb{R}, use the unit theorem to deduce the classical structure of the solution set to Pell’s equation for $d \equiv 1 \bmod 4$, and relate “the” fundamental unit (or its square or cube or sixth power) to the “minimal” solution to Pell’s equation.

 (iii) (optional) Formulate variants of Pell’s equation (of the form $x^2 - dy^2 = k$) whose solvability in \mathbb{Z} (with $y \neq 0$) is equivalent to the fundamental unit having norm -1, or not lying in $\mathbb{Z}[_{\sqrt{d}}]$ (for $d \equiv 1 \bmod 4$), or both.

3. A number field K is totally real if all embeddings of K into \mathbb{C} have image contained in \mathbb{R}, and K is totally imaginary if K has no embeddings into \mathbb{R}. The field K is a CM field if it is a totally imaginary extension of a totally real subfield K_0 with $[K : K_0] = 2$. (CM fields first arose in the study of abelian varieties with “complex multiplication,” hence the terminology.)

 (i) Give necessary and sufficient conditions for K to be totally real (resp. totally imaginary) in terms of the structure of the \mathbb{R}-algebra $K \otimes_{\mathbb{Q}} \mathbb{R}$.
(ii) If \(K \) is a CM field, prove that for all embeddings \(\iota : K \hookrightarrow \mathbb{C} \), the action of complex conjugation preserves \(\iota(K) \) and hence induces an involution on \(K \). Prove that this involution is independent of \(\iota \), and so \(K \) admits an intrinsic “complex conjugation”. Also conclude that the totally real subfield \(K_0 \) in the definition of the CM condition is in fact unique inside of \(K \) (and \(\iota(K_0) = \iota(K) \cap \mathbb{R} \) for any \(\iota \)).

(iii) Conversely, let \(K \) be a number field such that for all embeddings \(\iota : K \hookrightarrow \mathbb{C} \), the subfield \(\iota(K) \) is stable under complex conjugation and the automorphism \(x \mapsto \iota^{-1}(\iota(x)) \) of \(K \) with order \(\leq 2 \) is independent of \(\iota \) and is non-trivial. Prove that \(K \) is a CM field.

(iv) Prove that any finite abelian extension of \(\mathbb{Q} \) is either totally real or CM, and that a compositum of CM fields is CM. Also prove that if \(f \in \mathbb{Q}[X] \) is an irreducible cubic that is not split over \(\mathbb{R} \) then a splitting field for \(f \) over \(\mathbb{Q} \) is an even-degree extension of \(\mathbb{Q} \) that is neither totally real nor CM.

4. Let \(K = \mathbb{Q}(\sqrt{3}, \sqrt{5}) \) be a splitting field for \((X^2 - 3)(X^2 - 5) \) over \(\mathbb{Q} \). Prove that \(\alpha = \sqrt{3} + \sqrt{5} \) is a primitive element, and compute the discriminant of the order \(\mathcal{O} = \mathbb{Z}[\alpha] \) over \(\mathbb{Z} \) in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to “write down” the conjugates of \(\alpha \) over \(\mathbb{Q} \)) use the formula \((-1)^{n(n-1)/2} \prod_{\sigma \neq \tau} (\sigma(\alpha) - \tau(\alpha))\) (with \(n = [K : \mathbb{Q}] = 4 \) here). Do you get the same answer by both methods? I hope so!

5. (optional) The following exercise is not terribly important for our purposes, but you should be aware of its assertions. Let \(K/k \) be a finitely generated extension of fields.

(i) Prove that every intermediate extension is finitely generated over \(k \).

(ii) Give a finitely generated \(k \)-algebra containing a \(k \)-subalgebra that is not finitely generated.

(iii) Prove that if \(K/k \) admits a separating transcendence basis, then \(K \otimes_k k' \) is a domain (and hence a field) for any purely inseparable algebraic extension \(k'/k \). Deduce that if \(k = \mathbb{F}_p(X,Y) \) and \(K \) is the fraction field of \(k[U,V]/(U^p - XV^p - Y) \) (why is this a domain?), then \(K/k \) does not admit a separating transcendence basis (extra credit: Show that \(k \) is algebraically closed in \(K \) in this example, so the example is “geometric.”)