
Math 248A. Completion of algebraic closure

1. Introduction

Let K be a field complete with respect to a non-trivial non-archimedean absolute value | · |. It is natural
to seek a “smallest” extension of K that is both complete and algebraically closed. To this end, let K
be an algebraic closure of K, so this is endowed with a unique absolute value extending that on K. If K
is discretely-valued and π is a uniformizer of the valuation ring then by Eisenstein’s criterion we see that
Xe−π ∈ K[X] is an irreducible polynomial with degree e for any positive integer e, so K has infinite degree
over K. In particular, K with its absolute value is never discretely-valued. In general if K is not algebraically
closed then K must be of infinite degree over K. Indeed, recall from field theory that if a field F is not
algebraically closed but its algebraic closure is an extension of finite degree then F admits an ordering (so
F has characteristic 0 and only ±1 as roots of unity) and F (

√
−1) is an algebraic closure of F (see Lang’s

Algebra for a proof of this pretty result of Artin and Schreier). However, a field K complete with respect to a
non-trivial non-archimedean absolute value cannot admit an order structure when the residue characteristic
is positive (whereas there are examples of order structures on the discretely-valued complete field R((t)) with
residue characteristic 0). Indeed, this is obvious if K has positive characteristic, and otherwise K contains
some Qp and hence it is enough to show that the fields Qp do not admit an order structure. For p > 3
there are roots of unity in Qp other than ±1, and for p > 2 there are many negative integers n that satisfy
n ≡ 1 mod p and thus admit a square root in Q3. Similarly, any negative integer n satisfying n ≡ 1 mod 8
has a square root in Q2. This shows that indeed [K : K] must be infinite if the complete non-archimedean
field K is not algebraically closed and its residue field has positive characteristic. The same conclusion holds
in the uninteresting case when the residue characteristic is 0, by the following alternative trick. In such cases
if we choose a nonzero nonunit t in the valuation ring then K must contain Q((t)) with its t-adic valuation,
and so K contains L ⊗Q Q((t)) = L((t)) for any finite extension L/Q inside of Q ⊆ K. But for any finite
Galois extension L/Q inside of Q we get a finite Galois extension L((t))/Q((t)) inside of K with the same
Galois group, so L((t)) has degree 1 or 2 over the subfield L((t)) ∩K ⊆ L((t)) over Q((t)) since [K : K] = 2.
But the equality of Galois groups forces L((t)) ∩K = F ((t)) for a subfield F ⊆ L, and clearly [L : F ] is equal
to 1 or 2, so K contains such an F . In particular, we may choose L/Q to be a cyclic extension of degree 4
whose unique quadratic subfield is imaginary, so F cannot have an order structure and thus neither can K.
We therefore get a contradiction if [K : K] is finite and > 1, even in residue characteristic 0.

Although finite extensions of K are certainly complete with respect to their canonical absolute value (the
unique one extending the absolute value on K), for infinite-degree extensions of K it seems plausible that
completeness (with respect to the canonical absolute value) may break down. Indeed, it is a general fact that
K is not complete if it has infinite degree over K. See 3.4.3/1 in the book “Non-archimedean analysis” by
Bosch et al. for a proof in general, and see Koblitz’ introductory book on p-adic numbers for a proof of non-
completeness in the case K = Qp. We do not require these facts, but they motivate the following question:
is this completion of K algebraically closed? If not, then one may worry that iterating the operations of
algebraic closure and completion may yield a never-ending tower of extensions. Fortunately, things work out
well:

Theorem 1.1. The completion CK of K is algebraically closed.

The field CK is to be considered as an analogue of the complex numbers relative to K, and for K = Qp it
is usually denoted Cp. Observe that since Aut(K/K) acts on K by isometries, this action uniquely extends
to an action on CK by isometries. The algebraic theory of infinite Galois theory therefore suggests the
natural question of computing the fixed field for Aut(K/K) on CK . Observe that this is not an algebraic
problem, since the action on CK makes essential use of the topological structure on CK . It is a beautiful and
non-trivial theorem of Tate that if char(K) = 0 and K is discretely-valued with residue field of characteristic
p (for example, a local field of characteristic 0) then the subfield of Gal(K/K)-invariants in CK coincides
with K. That is, “there are no transcendental invariants” in such cases. This theorem is very important at
the beginnings of p-adic Hodge theory.

1



2

The purpose of this handout is to present a proof of Theorem 1.1. Note that this theorem is proved in
Koblitz’ book in the special case K = Qp, but his proof unfortunately is written in a way that makes it
seem to use the local compactness of Qp. The proof we give is a more widely applicable variant on the same
method, and we use the same technique to also prove a result on continuity of roots that is of independent
interest.

2. Proof of Theorem 1.1

Choose f = Xn + an−1X
n−1 + · · · + a0 ∈ CK [X] with n > 0. Since K is dense in CK , there exists

polynomials

fj = Xn + an−1,jX
n−1 + · · ·+ a0,j ∈ K[X]

with aij → ai in CK as j → ∞. If ai 6= 0 then we may arrange that |aij − ai| < min(|ai|, 1/j) for all j,
so |aij | = |ai| for all j. If ai = 0 then we may take aij = 0 for all j. Hence, for all 0 ≤ i ≤ n − 1 we have
|aij | = |ai| and |aij −ai| < 1/j for all j. Of course, we have no control over the finite extensions K(aij) ⊆ K
as j varies for a fixed i.

Since K is algebraically closed, we can pick a root rj ∈ K for fj for all j. The idea is to find a subsequence
of the rj ’s that is Cauchy, so it has a limit r in the complete field CK , and clearly f(r) = lim fj(rj) = 0.
This gives a root of f in CK . Since fj(rj) = 0 for all j, we have

|rnj | =

∣∣∣∣∣−
n−1∑
i=0

aijr
i
j

∣∣∣∣∣ ≤ max
i
|aij ||rj |i = max

i
|ai||rj |i

because |aij | = |ai| for all j. Hence, for each j there exists 0 ≤ i(j) ≤ n − 1 such that |rj |n ≤ |ai(j)||rj |i(j),
so |rj | ≤ |ai(j)|1/(n−i(j)). Thus,

|rj | ≤ C
def= max(|a0|1/n, |a1|1/(n−1), . . . , |an−1|)

for all j. Note that C only depends on the coefficients ai of f .
Since f and fj are monic with the same degree n > 0, we have

|f(rj)| = |f(rj)− fj(rj)| =

∣∣∣∣∣
n−1∑
i=0

(ai − aij)rij

∣∣∣∣∣ ≤ max
0≤i≤n−1

|ai − aij ||rj |i ≤ max
0≤i≤n−1

|ai − aij | ·max(1, Cn−1)

because |rj |i ≤ Ci ≤ Cn−1 for all i if C ≥ 1 and |rj |i ≤ Ci ≤ 1 for all i if C ≤ 1. Recall that we choose aij
so that |aij − ai| < 1/j for all j, so we conclude

|f(rj)| ≤
max(1, Cn−1)

j

for all j. Hence, f(rj)→ 0 as j →∞. We shall now use this fact to infer that {rj} has a Cauchy subsequence
in CK , which in turn will complete the proof.

Let L be a finite extension of CK in which the monic f splits, say f(X) =
∏
k(X − ρk). We (uniquely)

extend the absolute value on the (complete) field CK to one on L, so we may rewrite the condition f(rj)→ 0
as

lim
j→∞

n∏
k=1

(rj − ρk) = 0

in L. In other words,
∏n
k=1 |rj − ρk| → 0 in R. Hence, by the pigeonhole principle, since there are only

finitely many k’s we must have that for some 1 ≤ k0 ≤ n the sequence {|rj − ρk0 |}j has a subsequence
converging to 0. Some subsequence of the rj ’s must therefore converge to ρk0 in L, so this subsequence is
Cauchy in CK .
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3. Continuity of roots

Let f =
∑
aiX

i ∈ K[X] be monic of degree n > 0, so the roots of f in CK lie in K. An inspection of
the proof of Theorem 1.1 shows that the argument yields the following general result:

Lemma 3.1. Let {fj} be a sequence of monic polynomials fj =
∑
aijX

j of degree n in K[X] such that
aij → ai as j →∞ for all 0 ≤ i ≤ n− 1. Let rj ∈ K be a root of fj for each j. There exists a subsequence
of {rj} that converges to a root of f in K.

We may now deduce the following general result that is usually called “continuity of roots” (in terms of
their dependence on the coefficients of f).

Theorem 3.2. Let r ∈ K be a root of a degree-n monic polynomial f =
∑
aiX

i ∈ K[X], with ordr(f) = µ >
0. Fix ε0 > 0 such all roots of f in K distinct from r have distance at least ε0 from r. (If there are no other
roots, we may use any ε0 > 0.) For all 0 < ε < ε0 there exists δ = δε,f > 0 such that if g =

∑
biX

i ∈ K[X]
is monic with degree n and |ai − bi| < δ for all i then g has exactly µ roots (with multiplicity) in the open
disc Bε(r) = {x ∈ K | |x− r| < ε}.
Proof. We argue by contradiction. Fix a choice of ε. If there exists no corresponding δ, then we would get
a sequence of monic polynomials fj =

∑
aijX

i ∈ K[X] with degree n such that aij → ai as j → ∞ for
each i and each fj does not have exactly µ roots on Bε(r). Pick factorizations fj =

∏n
k=1(X − ρjk) upon

enumerating the n roots (with multiplicity) for each fj in K. By Lemma 3.1 applied to {ρj1}, we can pass
to a subsequence of the fj ’s so ρj1 → ρ1 with ρ1 some root of f in K. Successively working with {ρjk}j for
k = 2, . . . , n and passing through successive subsequence of subsequences, etc., we may suppose that there
exist limits ρjk → ρk in K as j →∞ for each fixed 1 ≤ k ≤ n.

Each ρk must be a root of f , but we claim more: every root of f arises in the form ρk for exactly as
many k’s as the multiplicity of the root. Working in the finite-dimensional K-vector space of polynomials
of degree ≤ n (given the sup-norm with respect to an arbitrary K-basis, the choice of which does not affect
the topology), we have

fj =
n∏
k=1

(X − ρjk)→
n∏
k=1

(X − ρk),

yet also fj → f . Hence, f =
∏n
k=1(X − ρk) in K[X]. That is, {ρk} is indeed the set of roots of f in K

counted with multiplicites. Hence, r = ρk for exactly µ values of k, say for 1 ≤ k ≤ µ by relabelling.
By passing to a subsequence we may arrange that for each 1 ≤ k ≤ n, |ρjk−ρk| < ε for all j. In particular,

if 1 ≤ k ≤ µ we have |ρjk − r| < ε. Since all roots r′ of f distinct from r have distance ≥ ε0 > ε from r, by
the non-archimedean triangle inequality we have |ρjk − r′| = |r − r′| ≥ ε0 > ε for all 1 ≤ k ≤ µ and any j.
However, if k > µ then ρk is such an r′, yet |ρjk−ρk| < ε for all j and all k, so for each fixed j we must have
|ρjk − r| ≥ ε0 > ε for all k > µ. Thus, for the j’s that remain (as we have passed to some subsequence of
the original sequence), ρj1, . . . , ρjµ are precisely the roots of fj (with multiplicity) that are within a distinct
< ε from the root r of f . This contradicts the assumption on the fj ’s. �

Here is an important corollary that is widely used.

Corollary 3.3. Let f ∈ K[X] be a separable monic polynomial with degree n. Choose ε > 0 as in Theorem
3.2. For each monic g ∈ K[X] with degree n and coefficients sufficiently close to those of f , g is separable
and each root of g in Ksep is within a distance < ε from a unique root of f in Ksep. Moreover, if f is
irreducible then g is irreducible.

Proof. We apply Theorem 3.2 with µ = 1 to conclude that if such a g is coefficientwise sufficiently close to
f then each of the n roots of g (with multiplicity) is within a distance < ε from a unique root of f . In
particular, g has n distinct roots and hence is separable. Thus, all roots under consideration lie in Ksep.
The uniqueness aspect, together with the fact that Gal(Ksep/K) acts on Ksep by isometries, implies that the
Gal(Ksep/K)-orbit of a root of g has the same size as the Gal(Ksep/K)-orbit of the corresponding nearest
root of f . Hence, the degree-labelling of the irreducible factorization of g over K “matches” that of the
separable f , and in particular if f is irreducible then g is irreducible. �


