
Math 216A. Homework 9
“. . . the usual definition of a scheme is not nicely suited to our proof.” Nagata

Ch. II: 4.4 (omit the noetherian hypothesis!), 4.6∗, 4.11, 5.1, 5.6, 5.7, 5.8.
For 4.6, more generally a proper affine map between noetherian schemes is finite: reduce

to the case of integral affine schemes and use [H, Ch. II, Thm. 4.11A] = [Mat, Thm. 10.4].
For 4.11(a), see [Mat, Thm. 11.7] (and corollary) for a proof of the Krull-Akizuki Theorem.

For 5.1, also construct natural isomorphisms of OX-modules

H omOX
(E ⊗OX

F ,G ) 'H omOX
(F ,H omOX

(E ,G )), (E ⊗OX
F )∨ ' E ∨ ⊗OX

F∨.

Exercise A. For a morphism f : X → S, an S-scheme S ′, and the base change f ′ : X ′ → S ′,
prove: if f is proper then so is f ′, and the converse holds if S ′ → S is fpqc. (The converse is
false for “projective” since it is not local on the base.) Hint: don’t use the valuative criterion.

Exercise B. For r ≥ 1, a rank-r vector bundle on a locally ringed space (X,OX) is an
OX-module E that is “locally free of rank r”: for some open cover {Vj} of X, E |Vj

' O⊕rVj

as OVj
-modules for all j. When r = 1 we call E a line bundle or an invertible sheaf. (For

schemes X, such E are clearly quasi-coherent.)
(i) If F is an OX-module and q : F � E and q′ : F � E ′ are rank-r vector bundle

quotients, show there is at most one OX-linear map f : E ′ → E satisfying f ′ ◦ q′ = q and
that such an f (if it exists) is an isomorphism (we then say (E , q) and (E ′, q′) are isomorphic).
Deduce that there is a set of isomorphism classes of rank-n vector bundle quotients of F .

(ii) For n ≥ 0, explain why an invertible quotient of O⊕(n+1)
X is the “same thing” as data

(L , (s0, . . . , sn)) consisting of an invertible OX-module L and an ordered n-tuple of global
sections s0, . . . , sn ∈ Γ(X,L ) such that for all x ∈ X some sj(x) ∈ L (x) := Lx/mxLx is
nonzero. How is an isomorphism of invertible quotients expressed in terms of such data?

(iii) For a ring R, integer n ≥ 0, and 0 ≤ i ≤ n, let the functors Pn+1, Un,i : SchR ⇒ Set be
defined as follows: Pn+1(X) is the set of isomorphism classes as in (ii) and Un,i(X) ⊂ Pn+1(X)
is the subset of such data for which si(x) 6= 0 for all x ∈ X; these are contravariant functors
via pullback of sheaves. For any (L , (s0, . . . , sn)) ∈ Un,i(X) show OX → L via f 7→ fs is
an isomorphism, so for j 6= i we have sj = fjsi for a unique fj ∈ OX(X). Use this to prove
Un,i is represented by D+(Ti) = An

R.
(iv) For ξ = (L , (s0, . . . , sn)) ∈ Pn+1(X), show Xi = {x ∈ X | si(x) 6= 0} is the maximal

open V ⊂ X for which ξ|V ∈ Un,i(V ) and that the Xi’s cover X. Deduce Pn+1 is represented
by Pn

R, and thereby define an injection {(a0, . . . , an) ∈ An+1 | ai’s generate (1)}/A× ↪→ Pn(A)
for R-algebras A, surjective if all line bundles on Spec(A) are free (e.g., A local!).

(v) By (iv), over Pn
R there is a “universal structure”, denoted (O(1), (T0, . . . , Tn)). Describe

it in terms of gluing over the n+ 1 standard open affine n-spaces.

(vi) Define the Segre map Sn,m : Pn
R ×R Pm

R → P
(n+1)(m+1)−1
R on X-valued points by

((L , (s0, . . . , sn)), (L ′, (s′0, . . . , s
′
m))) 7→ (L ⊗L ′, (si ⊗ s′j))

(fix an enumeration of the (n + 1)(m + 1) ordered pairs of indices (i, j)). Why does the
right side make sense in P(n+1)(m+1)(X)? Prove Sn,m is a closed immersion by studying the
preimage of each D+(T(i,j)) (show it is D+(Ti)×RD+(Tj)). Describe Sn,m on A-valued points
for local R-algebras A via the end of (iv) to reprove Sn,m is proper via the valuative criterion.
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