MATH 216A. HOMEWORK 9

"... the usual definition of a scheme is not nicely suited to our proof." Nagata

Ch. II: 4.4 (omit the noetherian hypothesis!), 4.6*, 4.11, 5.1, 5.6, 5.7, 5.8.

For 4.6, more generally a proper affine map between noetherian schemes is finite: reduce to the case of integral affine schemes and use [H, Ch. II, Thm. 4.11A] = [Mat, Thm. 10.4]. For 4.11(a), see [Mat, Thm. 11.7] (and corollary) for a proof of the Krull-Akizuki Theorem.

For 5.1, also construct natural isomorphisms of \mathcal{O}_X -modules

 $\mathscr{H}om_{\mathscr{O}_{X}}(\mathscr{E}\otimes_{\mathscr{O}_{X}}\mathscr{F},\mathscr{G})\simeq\mathscr{H}om_{\mathscr{O}_{X}}(\mathscr{F},\mathscr{H}om_{\mathscr{O}_{X}}(\mathscr{E},\mathscr{G})),\ (\mathscr{E}\otimes_{\mathscr{O}_{X}}\mathscr{F})^{\vee}\simeq\mathscr{E}^{\vee}\otimes_{\mathscr{O}_{X}}\mathscr{F}^{\vee}.$

Exercise A. For a morphism $f: X \to S$, an S-scheme S', and the base change $f': X' \to S'$, prove: if f is proper then so is f', and the converse holds if $S' \to S$ is fpqc. (The converse is *false* for "projective" since it is not local on the base.) Hint: don't use the valuative criterion.

Exercise B. For $r \geq 1$, a rank-r vector bundle on a locally ringed space (X, \mathscr{O}_X) is an \mathscr{O}_X -module \mathscr{E} that is "locally free of rank r": for some open cover $\{V_j\}$ of $X, \mathscr{E}|_{V_j} \simeq \mathscr{O}_{V_j}^{\oplus r}$ as \mathcal{O}_{V_i} -modules for all j. When r = 1 we call \mathscr{E} a line bundle or an invertible sheaf. (For schemes X, such \mathscr{E} are clearly quasi-coherent.)

(i) If \mathscr{F} is an \mathscr{O}_X -module and $q: \mathscr{F} \twoheadrightarrow \mathscr{E}$ and $q': \mathscr{F} \twoheadrightarrow \mathscr{E}'$ are rank-r vector bundle quotients, show there is at most one \mathscr{O}_X -linear map $f : \mathscr{E}' \to \mathscr{E}$ satisfying $f' \circ q' = q$ and that such an f (if it exists) is an isomorphism (we then say (\mathcal{E}, q) and (\mathcal{E}', q') are isomorphic). Deduce that there is a set of isomorphism classes of rank-n vector bundle quotients of \mathscr{F} .

(ii) For $n \ge 0$, explain why an invertible quotient of $\mathscr{O}_X^{\oplus(n+1)}$ is the "same thing" as data $(\mathscr{L}, (s_0, \ldots, s_n))$ consisting of an invertible \mathscr{O}_X -module \mathscr{L} and an ordered *n*-tuple of global sections $s_0, \ldots, s_n \in \Gamma(X, \mathscr{L})$ such that for all $x \in X$ some $s_j(x) \in \mathscr{L}(x) := \mathscr{L}_x/\mathfrak{m}_x \mathscr{L}_x$ is nonzero. How is an isomorphism of invertible quotients expressed in terms of such data?

(iii) For a ring R, integer $n \ge 0$, and $0 \le i \le n$, let the functors $P_{n+1}, U_{n,i} : \operatorname{Sch}_R \rightrightarrows$ Set be defined as follows: $P_{n+1}(X)$ is the set of isomorphism classes as in (ii) and $U_{n,i}(X) \subset P_{n+1}(X)$ is the subset of such data for which $s_i(x) \neq 0$ for all $x \in X$; these are contravariant functors via *pullback* of sheaves. For any $(\mathscr{L}, (s_0, \ldots, s_n)) \in U_{n,i}(X)$ show $\mathscr{O}_X \to \mathscr{L}$ via $f \mapsto fs$ is an isomorphism, so for $j \neq i$ we have $s_j = f_j s_i$ for a unique $f_j \in \mathscr{O}_X(X)$. Use this to prove $U_{n,i}$ is represented by $D_+(T_i) = \mathbf{A}_B^n$.

(iv) For $\xi = (\mathscr{L}, (s_0, \dots, s_n)) \in P_{n+1}(X)$, show $X_i = \{x \in X \mid s_i(x) \neq 0\}$ is the maximal open $V \subset X$ for which $\xi|_V \in U_{n,i}(V)$ and that the X_i 's cover X. Deduce P_{n+1} is represented by \mathbf{P}_{R}^{n} , and thereby define an *injection* $\{(a_{0},\ldots,a_{n})\in A^{n+1} \mid a_{i}$'s generate $(1)\}/A^{\times} \hookrightarrow \mathbf{P}^{n}(A)$ for R-algebras A, surjective if all line bundles on Spec(A) are free (e.g., A local!).

(v) By (iv), over \mathbf{P}_{R}^{n} there is a "universal structure", denoted $(\mathscr{O}(1), (T_{0}, \ldots, T_{n}))$. Describe it in terms of gluing over the n + 1 standard open affine *n*-spaces. (vi) Define the Segre map $S_{n,m} : \mathbf{P}_R^n \times_R \mathbf{P}_R^m \to \mathbf{P}_R^{(n+1)(m+1)-1}$ on X-valued points by

$$((\mathscr{L}, (s_0, \dots, s_n)), (\mathscr{L}', (s'_0, \dots, s'_m))) \mapsto (\mathscr{L} \otimes \mathscr{L}', (s_i \otimes s'_j))$$

(fix an enumeration of the (n + 1)(m + 1) ordered pairs of indices (i, j)). Why does the right side make sense in $P_{(n+1)(m+1)}(X)$? Prove $S_{n,m}$ is a closed immersion by studying the preimage of each $D_+(T_{(i,j)})$ (show it is $D_+(T_i) \times_R D_+(T_j)$). Describe $S_{n,m}$ on A-valued points for local R-algebras A via the end of (iv) to reprove $S_{n,m}$ is proper via the valuative criterion.