Math 216A. Homework 3

1. Let $Z \subset \mathbf{A}^{n}$ be an affine algebraic set over an algebraically closed field k, with f_{1}, \ldots, f_{m} a finite set of generators of $\underline{I}(Z)$. Let J be the $n \times m$ "Jacobian matrix" $\left(\partial f_{i} / \partial X_{j}\right)$, and for $P \in Z$ let $J(P)$ be the $n \times m$ matrix over k whose entries are those of J evaluated at P. In class we saw $\operatorname{rank}(J(P)) \leq n-\operatorname{dim} \mathscr{O}_{Z, P}$ with equality if and only if $\mathscr{O}_{Z, P}$ is regular (in which case we say Z is smooth at P).
(a) Show that $\mathscr{O}_{Z, P}$ is a domain if and only if P lies in exactly one irreducible component of Z, and that in such cases there exists an open U containing P such that for all $Q \in U$ the local ring $\mathscr{O}_{Z, Q}$ has the same dimension as $\mathscr{O}_{Z, P}$.
(b) It is a theorem [Mat, Thm. 14.3] that regular local noetherian rings are domains. Using this and (a), show that the locus of smooth points in Z is open. (Later we'll see this open locus is always dense; that it is always non-empty for non-empty Z, roughly an algebraic Sard's theorem, is especially non-obvious when $\operatorname{char}(k)>0$!)
2. Let A be a finitely generated k-algebra for an algebraically closed field k. Let k^{\prime} / k be an extension field with k^{\prime} algebraically closed. Let $A^{\prime}=k^{\prime} \otimes_{k} A$, finitely generated over k^{\prime}.

In this exercise, you'll need to use your commutative algebra skills (e.g., Noether normalization, localizations, etc.). If you aren't aware of the notion of a separating transcendence basis for finitely generated extensions of a perfect field then read up on this (e.g., see $\S 13$ in Chapter II of Volume 1 of the classic "Commutative Algebra" by Zariski \& Samuel, or the self-contained first few pages of $\S 26$ of [Mat]). Try to think geometrically, if possible.
(a) It often is the case that A has a property P if and only if A^{\prime} has a property P for various properties P . Prove this for P the following properties: non-zero, domain, reduced, of dimension d, has a unique minimal prime, regular (i.e., all localizations at maximal ideals are regular local rings - keep in mind the link to the rank of a Jacobian matrix). This sort of thing is essential in order to pass between algebraic geometry over $\overline{\mathbf{Q}}$ and algebraic geometry over \mathbf{C} (where analytic tools become available).
(b) Prove that if A_{1} and A_{2} are finitely generated k-algebras, then $A_{1} \otimes_{k} A_{2}$ is reduced (respectively, is a domain) if A_{1} and A_{2} are of this type. (Hint: for reducedness, use the finite collection of minimal primes to reduce to A_{1} being a domain.) Give counterexamples if we drop the hypothesis that k is algebraically closed.
3. Let $f \in K\left[T_{1}, \ldots, T_{n}\right]$ be a polynomial, K a field.
(a) Explain how f being irreducible over K is equivalent to the non-solvability over K of a suitable system of polynomial equations.
(b) Using the Nullstellensatz over K (!), give a formulation in terms of your polynomial constraints for what it means to say f is irreducible over an algebraic closure of K.
(c) Using (b), show if $f \in \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right]$ is irreducible over an algebraic closure of \mathbf{Q} (or equivalently (!), over \mathbf{C}) then for all but finitely many primes p and any algebraically closed field k of characteristic p the image of f in $k\left[T_{1}, \ldots, T_{n}\right]$ is irreducible.
In (c) the "geometric" condition of irreducibility over $\overline{\mathbf{Q}}$ is crucial: $X^{2}-57$ is irreducible in $\mathbf{Q}[X]$ (but of course not in $\overline{\mathbf{Q}}[X]$) yet is reducible in $\mathbf{F}_{p}[X]$ for infinitely many p. This is a prototype for results that "spread out" geometric properties to all but finitely many p.

