Math 216A. Homework 2

". . . an arithmetic theory of algebraic varieties cannot but be a theory over arbitrary ground fields and not merely the complex numbers."

Zariski (1950)
Ch.I: 3.2, 3.3 (hint for (b): think about elements of the coordinate ring in terms of the concept of regular function), $5.1(\mathrm{a}, \mathrm{b}), 5.2(\mathrm{a}, \mathrm{b}), 5.10$. Just work with affine algebraic sets in 3.3 and 5.10 , but do not just work with affine varieties even when $[\mathrm{H}]$ says to consider only varieties (except for 3.3(c) where you should assume X and Y are irreducible, and 5.10(a) where you should replace $\operatorname{dim} X$ by $\operatorname{dim}_{P} X:=\operatorname{dim} \mathscr{O}_{X, P}$, the supremum of the dimensions of the irreducible components of X through P). Also, in 3.3(a) show that φ_{P}^{*} is a local map of local rings and that if $\psi: Y \rightarrow Z$ is another morphism of affine algebraic sets, then the composite $\operatorname{map} \varphi_{P}^{*} \circ \psi_{\varphi(P)}^{*}$ is equal to $(\psi \circ \varphi)_{P}^{*}$ (note how things go "backwards"!).
Exercise A. For an affine algebraic set $Z \subset \mathbf{A}^{n}$, we know that a base for the topology of Z consists of the open sets Z_{f} for $f \in k[Z]$. Show that Z_{f} is isomorphic (in the sense of morphisms between open subsets of affine algebraic sets!) to an affine algebraic set with coordinate ring $k[Z]_{f}$. One then refers to the open subsets Z_{f} as "basic affine opens" in Z. (There may be other open subsets of Z that are isomorphic to affine algebraic sets.)

Exercise B. Let $Z \subset \mathbf{A}^{n}$ be a Zariski-closed subset, and $P \in Z$ a point. Let $\mathfrak{m} \subset k[Z]$ be the maximal ideal corresponding to P (so $\mathfrak{m}=\{g \in k[Z] \mid g(P)=0\}$). For $h \in k[Z]$ with $h(P) \neq 0$, show that the composite k-algebra map $k[Z]_{h} \rightarrow k[Z]_{\mathfrak{m}} \rightarrow k[Z]_{\mathfrak{m}} / \mathfrak{m} k[Z]_{\mathfrak{m}}=$ $k[Z] / \mathfrak{m}=k$ (where the final equality is inverse to the natural map $k \rightarrow k[Z] / \mathfrak{m}$ that is an isomorphism by the Nullstellensatz) is given by $g / h^{m} \mapsto g(P) / h(P)^{m}$ for $g \in k[Z]$ and $m \geq 1$. (Hint: reduce to the case $Z=\mathbf{A}^{n}$ via functoriality considerations.)
Exercise C. Let A be a commutative ring, and S a multiplicative set in A containing 1. For $a, b \in A$, write $b \leq a$ if $b \mid a^{n}$ in A for some $n \geq 1$
(a) Prove \leq is a partial order on A for which any two elements are dominated by a third, with $A \rightarrow A_{a}$ factoring (necessarily uniquely) through $A \rightarrow A_{b}$ if and only if $b \leq a$.
(b) By (a), the A-algebras A_{a} constitute a directed system, so for varying $s \in S$ it makes sense to form $\lim A_{s}$. Show that this is uniquely isomorphic as an A-algebra to the localization $S^{-1} A$. (Hint: consider the universal property as an A-algebra.)
(c) For prime $\mathfrak{p} \subset A$ show uniquely $\lim A_{a} \simeq A_{\mathfrak{p}}$ as A-algebras where a varies through $A-\mathfrak{p}$. For an affine algebraic set \vec{Z} and irreducible closed $Y \subset Z$ corresponding to prime $\mathfrak{q} \subset k[Z]$, show the set of open $U \subset Z$ that meet Y is directed under reverse inclusion and uniquely $\underset{\longrightarrow}{\lim } \mathscr{O}(U) \simeq k[Z]_{\mathfrak{q}}$ as $k[Z]$-algebras.
Exercise D. For an affine variety Z and every non-empty open $U \subset Z$, show that $\mathscr{O}_{Z}(U)$ is a domain and the restriction map $k[Z]=\mathscr{O}_{Z}(Z) \rightarrow \mathscr{O}_{Z}(U)$ is an injection inducing an equality of fraction fields, so $\operatorname{Frac}\left(\mathscr{O}_{Z}(U)\right)$ is "independent of U ". For non-empty open $U, V \subset Z$, show $\mathscr{O}_{Z}(U \cup V)=\mathscr{O}_{Z}(U) \cap \mathscr{O}_{Z}(V)$ inside the "function field" $k(Z):=\operatorname{Frac}(k[Z])$.

Some reading (nothing to submit). Read about inverse limits of rings and modules: Exer. 10 \& 11 in Sec. 7.6 of Dummit \& Foote (not only countable index sets) and the end of [Mat, App. A], noting the mapping property. This also work for inverse limits of sets.

