
Math 216A. Sheafification

1. Introduction

Let X be a topological space, and F a presheaf on X. This handout gives some additional
details on the construction of sheafification provided in class. The construction we discussed
is totally different from the one given in [H]. The construction in [H, Ch. II, Prop. 1.2] is
certainly much simpler. But the reason we prefer the alternative construction as in class
is because it is the approach one must use when adapting the idea of sheafification to the
broader context of Grothendieck topologies later in life (e.g., the famous “étale topology”
developed in SGA4 which is the key to the solution of the Weil Conjectures and underlies
a vast amount of modern algberaic geometry and number theory, as well as the process of
“stackification” used to make sense of “quotient stacks” in the theory of Artin stacks that
provides a powerful generalization of the theory of schemes for advanced work with moduli
problems).

In class we defined a partial order “≥” via refinement on the set ΣU of open covers
V = {Vi}i∈I having no repetitions (i.e., Vi 6= Vj for i 6= j); this “no repetitions” condition
ensures ΣU is a set. We defined

F0(U) = lim−→
V∈ΣU

D(V)

where

D(V) = {(si) ∈
∏
i∈I

F (Vi) | si|Vij = sj|Vij in F (Vi ∩ Vj)}

is the set of “compatible local data relative to V” and these constitute a directed system.
More specifically, if {V ′i′}i′∈I′ =: V′ ≥ V; = {Vi}i∈I with τ : I ′ → I a “refinement” map for the
index sets (i.e,, V ′i′ ⊂ Vτ(i′) for all i′ ∈ I ′) then we define the transition map D(V) → D(V′)
via (si) 7→ (sτ(i′)|Vi′ ). This transition map is independent of τ because if σ : I ′ → I is also a
“refinement” map then V ′i′ ⊂ Vτ(i′), Vσ(i′) implies V ′i′ ⊂ Vτ(i′)∩Vσ(i′), so the agreement of sτ(i′)

and sσ(i′) upon restriction over Vτ(i′) ∩ Vσ(i′) implies that their restrictions to V ′i′ coincide.
Such independence of the choice of τ is the reason that the direct limit defining F0(U) is
really intrinsic to F and U (not reliant upon auxiliary choices).

2. Basic constructions

Having defined F0(U) for open U ⊂ X, we have an evident map of sets F (U)→ F0(U)
via s 7→ s ∈ D({U}) (the image of s in each D(V) is (s|Vi)). If U ′ ⊂ U is an open subset then
we define ΣU → ΣU ′ compatible with “≥” via V 7→ V∩U ′ := {Vi∩U ′} (dropping repetitions),
and the restriction map F0(U)→ F0(U ′) comes from the maps D(V)→ D(V∩U ′) defined by
(si) 7→ (si|Vi∩U ′). It is then easy to check (do it) that these restriction maps F0(U)→ F0(U ′)
satisfy the transitivity condition to make F0 a presheaf, and that the maps F (U)→ F0(U)
are compatible with these restrictions, so we thereby obtain a map of presheaves

θ0 : F → F0.

Lemma 2.1. If F is a sheaf then θ0 is an isomorphism.
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Proof. The sheaf axiom gives that for any V ∈ ΣU , the natural map F (U) = D({U}) →
D(V) is an isomorphism. This latter map is compatible with the transition maps D(V) →
D(V′) for V′ ≥ V, so passing to the direct limit over such V’s yields that the natural map
θ0 : F (U)→ F0(U) is an isomorphism for all U , so we are done. �

Now we show that θ0 satisfies two of the desired properties of sheafification: the stalk
condition and a suitable version of the universal mapping property despite that maybe the
presheaf F0 isn’t a sheaf!

Lemma 2.2. For all x ∈ X, the map on stalks (θ0)x : Fx → (F0)x is an isomorphism.

Proof. Pick x ∈ X. Any germ ξ ∈ (F0)x arises from F0(U) for some open U around x,
so it is represented by compatible local data (si) ∈

∏
F (Vi) for some open cover {Vi} of

U . Thus, x lies in some Vi0 , and the compatibility among the si’s implies that the image
of (si) under D(V) → D(V ∩ Vi0) arises from si0 ∈ F (Vi0) = D({Vi0}). In other words,
θ0 : F (Vi0)→ F0(Vi0) carries si0 to a representative of ξ. This shows that (θ0)x is surjective
for all x.

Suppose germs ξ, ξ′ ∈ Fx are carried to the same place under (θ0)x, so for a sufficiently
small open U ⊂ X around x we can pick representatives s, s′ ∈ F (U) so that θ0(s) = θ0(s′)
in F0(U). The definition of F0(U) as a direct limit provides an open cover V = {Vi} of U
so that (s|Vi) = (s|Vi) in

∏
F (Vi). In other words, s|Vi = s′|Vi for all i ∈ I. In particular,

since {Vi} is an open cover of the open set U contaning x, some Vi0 contains x. Thus, the
equality s|Vi0 = s′|Vi0 in F (Vi0) implies that the associated germs sx, s

′
x ∈ Fx coincide. But

by design of s and s′ we have sx = ξ and s′x = ξ′, so ξ = ξ′ as desired. �

Proposition 2.3. If f : F → G is a map to a sheaf then it uniquely factors through θ0

(i.e., there is a unique h : F0 → G so that h ◦ θ0 = f).

Proof. The construction of F0 is “functorial in F”, meaning that there is an evident associ-
ated map f0 : F0 → G0 (arising on sections over any open U ⊂ X via passage to the direct
limit over ΣU of the maps DF (V) → DG (V) induced by

∏
F (Vi) →

∏
G (Vi) defined by f

factorwise) making the diagram of presheaves

F
f //

θ0,F
��

G

θ0,G'
��

F0
f0

// G0

commute; the right side is an isomorphism because G is a sheaf. The composition h = θ−1
0,G ◦f0

satisfies

h ◦ θ0,F = θ−1
0,G ◦ f0 ◦ θ0,F = θ−1

0,G ◦ θ0,G ◦ f = f.

We have built the desired factorization of f through θ0 = θ0,F , and it remains to show that
such a factorization is unique.

Say h′ : F0 ⇒ G is a map of presheaves satisfying h′ ◦ θ0 = f . We want to show that
h′ = h for h as above. We have shown that h◦θ0 = f , so passing to the stalks at each x ∈ X
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gives an equality of stalk maps hx ◦ (θ0)x = fx = h′x ◦ (θ0)x with (θ0)x an isomorphism, so
hx = h′x as maps Fx ⇒ Gx. Hence, for any open U ⊂ X and s ∈ F (U) we have

h(s)x = hx(sx) = h′x(sx) = h′(s)x.

Thus, the elements h(s), h′(s) ∈ G (U) that we want to show are equal (yielding h = h′)
have the same stalk at each x ∈ U , so they have the same restriction to some open Ux ⊂ U
around x. Such opens Ux constitute an open cover of U , so since G is a sheaf we conclude
that h(s) = h′(s) as desired. �

Putting this all together, if F0 were a sheaf then (F0, θ0) would satisfy the desired proper-
ties. Alas, this may not be a sheaf. To overcome this issue, we next investigate more closely
the properties of F0.

3. Separated presheaves

By definition, a sheaf is a presheaf F satisfying two conditions: local uniqueness (i.e.,
s, t ∈ F (U) agreeing upon restriction to members of an open cover of U must satisfy s = t)
and gluing of compatible local data. If F satisfies just the first of these two conditions, we
call it a separated presheaf. (This is a notion that only ever arises essentially just in the
construction of sheafification.) Though F0 may not be a sheaf, it gets us at least halfway
there:

Lemma 3.1. For any presheaf F , the presheaf F0 is separated.

Proof. Say s, t ∈ F0(U) for open U ⊂ X satisfy s|Ui = t|Ui in F0(Ui) for all members Ui of
an open cover of U . We want to conclude that s = t. Since ΣU is a directed set relative to
refinement, we can pick an open cover V = {Vj} of U so that s, t both arise from D(V). That
is, s and t respectively arise from (sj), (tj) ∈

∏
F (Vj) which satisfy overlap compatibility.

For an open cover V′ of U refining both V and {Ui}, one checks that D(V)→ D(V′) carries
(sj) and (tj) to the same place. Hence, in the direct limit F0(U), the images of s and t
coincide as desired. �

In view of the preceding lemma, iterating the construction F  (F0, θ0) twice does the
job once we show:

Lemma 3.2. If F is a separated presheaf then F0 is a sheaf.

Proof. We already know that F0 is always a separated presheaf, so the issue is to check that
it satisfies the gluing axiom when F is separated. That is, if U is an open subset of X and
V = {Vi} is an open cover of U then for any (si) ∈

∏
F0(Vi) satisfying si|Vi∩Vj = sj|Vi∩Vj in

F0(Vi ∩ Vj) for all i, j we seek s ∈ F0(U) such that s|Vi = si in F0(Vi) for all i.
It is enough to find s ∈ F0(U) and open covers {Vi,α}α∈Ai of each Vi such that s|Vi,α = ai|Vi,α

in F0(Vi,α) for all α ∈ Ai. Indeed, then separatedness of F0 (!) would force the sections
s|Vi , si ∈ F0(Vi) to coincide for each i, as desired.

By definition, each si ∈ F0(Vi) comes from (si,α) ∈
∏

α∈Ai F (Vi,α) for some open cover
{Vi,α}α∈Ai of Vi. The hypothesis that si|Vi∩Vj = sj|Vi∩Vj in the direct limit F0(Vi ∩ Vj) over
the index set ΣVi∩Vj directed by refinement provides V refining the open cover

{Vi,α ∩ Vj,β}(α,β)∈Ai×Aj



4

of Vi ∩ Vj such that each si,α and sj,β have the same restriction into F (V ) for all V ∈ V.
But F is separated by hypothesis, so the agreement of restrictions over constituents V of an
open cover of Vi,α ∩ Vj,β forces actual equality

si,α|Vi,α∩Vj,β = sj,β|Vi,α∩Vj,β
in F (Vi,α ∩ Vj,β)! Hence, the element

(si,α) ∈
∏

F (Vi,α)

satisfies the overlap compatibility condition to belong to D({Vi,α}), so it represents an ele-
ment s in the direct limit in F0(U). By design, s|Vi,α = si|Vi,α in F0(Vi,α) for all i ∈ I and
α ∈ Ai. Hence, as we saw already via the separatedness of F0, this s does the job! �


