
Math 216A. Extensions of Quasi-coherent Sheaves

1. Main result

For modules M and N over a ring A, an extension of M by N is a short exact sequence
of A-modules

0→ N → E →M → 0.

Likewise, for sheaves of modules F ′ and F ′′ on a ringed space (X,OX), an extension of F ′′

by F ′ is a short exact sequence of OX-modules

(1) 0→ F ′ → F → F ′′ → 0.

The aim of this handout is to discuss how quasi-coherence behaves under the formation of
extensions. We will prove:

Proposition 1.1. For any scheme X and short exact sequence (1) of OX-modules, if F ′

and F ′′ are quasi-coherent then so is F .

This assertion is of local nature on X, so we can assume X = SpecA is affine. By the
Localization Criterion for quasi-coherence on affine schemes, to show F is quasi-coherent
we just need to check that for all a ∈ A the natural map

θF ,a : F (X)a → F (D(a))

is an isomorphism. The analogous maps for F ′ and F ′′ are isomorphisms since these sheaves
are assumed to be quasi-coherent. Moreover, by naturality of θF ,a in F combined with
the left-exactness of the formation of sections over an open subset and the exactness of
localization at a we have a commutative diagram of left-exact sequences

0 // F ′(X)a //

'
��

F (X)a //

��

F ′′(X)a

'
��

0 // F ′(D(a)) // F (D(a)) // F ′′(D(a))

Due to the indicated vertical isomorphisms, a simple diagram chase shows that the middle
arrow (which we want to be an isomorphism) is at least injective. Moreover, if we had
surjectivity at the right end along the top then a diagram chase would yield surjectivity for
the middle arrow too, and so we would be done. Thus, it suffices to show that F (X) →
F ′′(X) is surjective (as then its a-localization is surjective for any a ∈ A).

In general, the formation of global sections is merely left-exact and not right-exact. (The
vast edifice of sheaf cohomology is all about the failure of such right-exactness.) So how could
we reasonably expect to prove F (X) → F ′′(X) is surjective? What special feature of our
situation could lead to such a hope being realized? It is that the kernel F ′ = ker(F � F ′′)
is quasi-coherent. More generally:

Theorem 1.2. For any short exact sequence (1) on an affine scheme X = Spec(A) with F ′

quasi-coherent, the map F (X)→ F ′′(X) is surjective.
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Our proof of this below is a reinterpretation of the proof given in [H, Ch. II, Prop. 5.6],
expressed in the more conceptual language of “cohomology”, though we will not actually
require any knowledge of what sheaf cohomology is. Nonetheless, the approach we take is a
good first warm-up to a style of analysis that appears over and over again in the study of
sheaf cohomology in Math 216B and beyond.

Remark 1.3. Although the length of our proof below is somewhat longer than for [H, Ch. II,
Prop. 5.6] (which itself relies on [H, Ch. II, Lemma 5.3] that is exactly a bare-hands formula-
tion of the localization property G (Spec(A))a ' G (Spec(Aa)) for a quasi-coherent sheaf on
an affine scheme), the main content of the computational work is really the same. This is
because the “partition of unity” step in the proof of [H, Ch. II, Prop. 5.6] is lurking inside the

fact that the “B-presheaf” in the construction of M̃ satisfies the B-sheaf property to ensure
the associated sheaf has the expected module of global sections over an affine scheme. The
main merit of our argument below is that it puts the computations into a broader conceptual
context which will be investigated extensively in Math 216B.

2. A reformulation

Let’s explain how Theorem 1.2 can be reduced to a problem entirely about F ′, making
essentially no reference to F or F ′′. This will have nothing to do with schemes or quasi-
coherence, so for the moment we shall work with an arbitrary topological space X and a
short exact sequence of abelian sheaves

0→ F ′ → F → F ′′ → 0.

Pick s ∈ F ′′(X). We want to formulate an “obstruction” to being in the image of F (X).
Locally on X, the section s lifts to a section of F (a general feature of sheaf surjections).
Thus, there is an open cover {Uj}j∈J of X such that s|Uj

lifts to some tj ∈ F (Uj) for each
j ∈ J . Keep in mind that this choice of open cover depends on s.

If the tj’s were to agree on overlaps then they would glue to a section t ∈ F (X) which
does the job: t 7→ s in F ′′(X) since this can be checked over each Uj (where it holds since
t|Uj

= tj in F (Uj) lifts s|Uj
∈ F ′′(Uj) by design). But typically there is no reason for the

tj’s to agree on overlaps, since there is so much flexibility in how each is chosen: there is the
freedom to change tj by an element t′j ∈ ker(F (Uj)→ F ′′(Uj)) = F ′(Uj) for each j.

Letting Ujj′ := Uj ∩ Uj′ , the difference tj′ − tj ∈ F (Ujj′) has image in F ′′(Ujj′) equal to
(s|Uj′

)|Ujj′
− (s|Uj

)|Ujj′
= s|Ujj′

− s|Ujj′
= 0, so tj′ − tj comes from an element

tjj′ ∈ ker(F (Ujj′)→ F ′′(Ujj′)) = F ′(Ujj′).

These elements in the F ′(Ujj”)’s are not completely arbitrary: they satisfy the “cocycle
condition” over the triple overlaps Ujj′j′′ (omitting “restrict to Ujj′j′′” notation):

tjj′ − tjj′′ + tj′j′′ = (tj′ − tj)− (tj′′ − tj) + (tj′′ − tj′) = 0

in F ′(Ujj′j′′).
If we were to replace tj with tj + τj for τj ∈ F ′(Uj) (the maximal flexibility we have) then

tjj′ is replaced with tjj′ + (τj′|Ujj′
− τj|Ujj′

). Thus, we seek such elements τj which make the

modified tjj′ ’s all vanish. In other words, we seek elements τj ∈ F ′(Uj) for all j so that
tjj′ = τj|Ujj”

− τj′|Ujj′
in F ′(Ujj′) for all j, j′.
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Our problem has been reduced to one entirely about F ′ essentially without any reference
to F and F ′′ as follows. Let U = {Uj}j∈J be an open cover of X, and define the group
Z1(U,F ′) of Čech 1-cocycles for F ′ relative to U to consist of tuples

t = (tjj′) ∈
∏
(j,j′)

F ′(Ujj′)

satisfying the “cocycle condition” tjj′−tjj′′ +tj′j′′ = 0 in F ′(Ujj′j′′) for all j, j′, j′′ ∈ J . There
is the subgroup B1(U,F ′) of “trivial” 1-cocycles (called 1-coboundaries) consisting of tuples
(tjj′)(j,j′) for which tjj′ = τj|Ujj”

− τj′ |Ujj′
for an element τ = (τj) ∈

∏
j F ′(Uj).

The preceding arguments showed that for any s ∈ F ′′(X) such that s|Uj
lifts to F (Uj)

for all j ∈ J , there is an associated 1-cocycle in Z1(U,F ′) well-defined modulo the subgroup
B1(U,F ′) of 1-coboundaries, and that s comes from F (X) if and only if the 1-cocycle we’ve
made is a 1-coboundary. In other words, to such an s we have built a canonical element

[s] ∈ H1(U,F ′) := Z1(U,F ′)/B1(U,F ′)

whose vanishing is necessary and sufficient for s to lift to F (X). In §3 we will show that
if X is affine, F ′ is quasi-coherent, and U is a finite open cover by basic affine opens then
[s] = 0. That will then complete the proof of Theorem 1.2.

The aim of showing the vanishing of the specific element [s] of course makes extensive
reference to F ′′ and F (and the specific U being considered was built from choices involving
s too), so this does not really make everything reduce to a problem intrinsic to F ′. But
in Math 216B, you will learn that when X is affine, F ′ is quasi-coherent, and all Uj are
affine then the entire group H1(U,F ′) vanishes. That is much more than we need, and this
much stronger vanishing is intrinsic to F ′ (and the choice of U, which can be arbitrary for
the purpose of defining H1(U,F ′)). It is also a step towards a deeper vanishing result for
positive-degree sheaf cohomology of quasi-coherent sheaves on affine schemes. Such wider
general vanishing lies much beyond what we need here. Nontheless, that gives some broader
context to “why” the vanishing we will prove below is true and more importantly can be
regarded as an instance of a deeper vanishing property that really is intrinsic to F ′.

Remark 2.1. There is a very useful property of [s] in the above generality (that will also help
us in the proof of its vanishing in the special case we need): if V ⊂ X is an open subset
then for the associated open cover V ∩ U = {V ∩ Uj}j∈J we have a corresponding element
[s|V ] ∈ H1(V ∩ U,F ′|V ) and there is an obvious “restriction” map

H1(U,F ′)→ H1(V ∩ U,F ′|V ).

The useful property is that this latter map carries [s] to [s|V ], the verification of which is left
as an exercise in inspecting the definitions.

3. A localization trick

Now we focus on a special case: X = Spec(A) is affine, F ′ is quasi-coherent, and U =
{U1, . . . , Un} is a finite open cover of X by basic affine opens Uj = D(aj) = Spec(Aaj). By
Remark 2.1, for any Uj ∈ U the natural map

ρj : H1(U,F ′)→ H1(Uj ∩ U,F ′|Uj
)
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carries [s] to [s|Uj
], but we chose each Uj so that s|Uj

lifts to F (Uj) and hence [s|Uj
] = 0. In

other words, ρj([s]) = 0 for all j. To exploit this, we finally make use of the quasi-coherence
of F ′:

Lemma 3.1. For any basic affine open U = D(a) ⊂ Spec(A) = X, the natural map

H1(U,F ′)a → H1(U ∩ U,F ′|U)

(induced by the “restriction” H1(U,F ′) → H1(U ∩ U,F ′|U) that is linear over A → Aa) is
an isomorphism.

Proof. There are compatible restriction maps

Z1(U,F ′)→ Z1(U ∩ U,F ′|U), B1(U,F ′)→ B1(U ∩ U,F ′|U)

linear over A→ Aa, so it suffices to show that the resulting Aa-linear maps

Z1(U,F ′)a → Z1(U ∩ U,F ′|U), B1(U,F ′)a → B1(U ∩ U,F ′|U)

are isomorphisms.
But if one goes back to how Z1 and B1 are defined, one sees that both source and target

of each map are defined in terms of compatible kernels and images of A-linear maps built in
terms of compatible finite direct products among F ′(Uj), F ′(Ujj′), F ′(Ujj′j′′), and analogues
with these open sets replacing with their intersection with U = D(a). Since a-localization
commutes with finite direct products, the maps in question all naturally arise from instances
of the maps

(2) F ′(V )a → F ′(D(a) ∩ V )

for basic affine open V = Spec(B) ⊂ Spec(A) and so it suffices (check!) to show that
the latter maps are all isomorphisms. If A → B carries a to an element b ∈ B then
D(a) ∩ V = D(b), and so for the quasi-coherent restriction G = F ′|V on V = Spec(B) the
map (2) is identified with the natural map G (V )b → G (D(b)). But this latter map is an
isomorphism due to quasi-coherence! �

This Lemma applied to U = Uj = D(aj) leads us to the conclusion that the element
[s] ∈ H1(U,F ′) has vanishing image in the localization H1(U,F ′)aj for every j. But for any
A-module M (e.g., M = H1(U,F ′)) an element m ∈ M with vanishing image in every Maj

is equal to 0: this is either seen via bare hands with stalks at primes, or by reinterpreting

the map M →
∏

j Maj as M̃(X) →
∏

j M̃(Uj) that is injective by the sheaf property of M̃

(since the Uj’s constitute an open cover of X). Thus, [s] = 0 as desired!


