
Math 216A. From modules to sheaves

1. The affine case

For a commutative ring A with spectrum X = Spec(A), in class we defined the functor

M  M̃ from A-modules to OX-modules, and we saw that for x = p ∈ X there is an

isomorphism M̃x ' Mp of modules over Ãx = OX,x = Ap naturally in M . In particular, a
diagram

0→M ′ →M →M ′′ → 0

of A-modules is a short exact sequence if and only if the associated diagram of sheaves

0→ M̃ ′ → M̃ → M̃ ′′ → 0

is short exact since in both cases short-exactness is equivalent to the same after compatibly
passing to module localizations at primes of A and sheaf stalks at points of X.

It was also noted that for any OX-module F , there is a natural isomorphism

(1) HomA(M,F (X)) ' HomOX
(M̃,F ).

Concretely, this says that any A-linear map M → F (X) arises as the map of global sections

for a unique OX-linear map M̃ → F .

The following result records the basic properties of the M̃ -construction.

Theorem 1.1. Let f : Y = Spec(B)→ Spec(A) = X be a map of affine schemes.

(i) The functor M  M̃ from the category of A-modules to the category of OX-modules
is fully faithful (i.e., “same morphisms”) and exact.

(ii) For A-modules M and M ′, the natural map (M ⊗A M
′)∼ → M̃ ⊗OX

M̃ ′ (associated

to the A-linear map M ⊗A M
′ → M̃(X) ⊗A M̃ ′(X) → (M̃ ⊗OX

M̃ ′)(X) on global
sections) is an isomorphism.

(iii) For a directed system {Mi} of A-modules, the natural map

(lim−→Mi)
∼ → lim−→ M̃i

(associated to the A-linear lim−→Mi = lim−→ M̃i(X) → (lim−→ M̃i)(X) on global sections)

is an isomorphism. In particular, the functor M  M̃ naturally commutes with
arbtitrary direct sums (as they are a direct limit of finite direct sums).

(iv) For any B-module N , with associated “underlying” A-module denoted AN , the nat-

ural map of OX-modules ÃN → f∗(Ñ) (associated to the A-linear map AN = N =

Γ(Spec(B), Ñ) = Γ(Spec(A), f∗(Ñ)) on global sections) is an isomorphism.
(v) For any A-module M , the natural map of OY -modules

(B ⊗A M)∼ → f ∗(M̃)

(associated to the B-linear map B ⊗A M → B ⊗A M̃(X) = OY (Y )⊗OX(X) M̃(X)→
(f ∗(M̃))(X) on global sections) is an isomorphism.
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(vi) If M and M ′ are A-modules with M finitely presented (i.e., M is a cokernel of a map
A⊕r → A⊕s between finite free modules, as is automatic when A is noetherian and
M is finitely generated) then the natural map

HomA(M,M ′)∼ →H omOX
(M̃, M̃ ′)

(associated to the A-linear map HomA(M,M ′)→ HomOX
(M̃, M̃ ′) on global sections

arising from functoriality of the (̃·) construction) is an isomorphism.

Proof. For (i), the exactness has already been noted via passages to stalks and module
localization at primes, and faithfulness (injectivity on Hom’s) is immediate via the natural

identification M ' M̃(X). For fullness (surjectivity on Hom’s), pick an OX-linear map

ϕ : M̃ → M̃ ′ and let h : M →M ′ be the induced A-linear map on global sections. We want

ϕ = h̃. This is a comparison of OX-linear maps M̃ ⇒ M̃ ′. But such equality of maps holds
on global sections by design, so it holds as sheaf maps due to the general equality (1). Thus,
(i) is proved.

For (ii), (iii), and (v) we can pass to stalks and thereby verify the desired isomorphism
property easily due to the fact that sheafification has no effect on stalks (recall that direct
limits and tensor products and sheaf-pullback are made as sheafifications of corresponding
presheaf constructions).

For (iv) it suffices to check we get an isomorphism on the sets of sections over a base of
opens, such as over each D(a) ⊂ Spec(A). If b ∈ B is the image of a ∈ A under f# : A→ B

then the map on D(a)-sections is (AN)a → Γ(Spec(Bb, Ñ) = Nb, and this is the natural
identification of localizations of N at a ∈ A as an A-module and at b = f#(a) ∈ B as a
B-module (think in terms of equivalence classes of fractions, for example).

Finally, it remains to prove (vi). For this we will use a version of the “finite presentation
trick” as arises when showing that HomA(M, ·) commutes with localization when M is finitely
presented.

The source and target for the map in (vi) commute with finite direct sums in M , and
the case M = A is obvious (the two sides compatibly identify with M ′ since HomA(A, ·)
and H omOX

(OX , ·) are the respective identity functors on A-modules and OX-modules).
Thus, the case M = A⊕n is verified for all n. Now we bootstrap from that via a choice of
right-exact presentation

(2) A⊕r → A⊕s →M → 0

and the associated right-exact (!) sequence

(3) O⊕rX → O⊕sX → M̃ → 0.

We apply HomA(·,M ′) to (2) to get a left-exact sequence of A-modules, which yields a left-

exact sequence of sheaves after applying the exact functor (̃·), and we apply H omOX
(·, M̃ ′)

to (3) to get a left-exact (check!) sequence of OX-modules. These two resulting right-
exact sheaf diagrams fit into a commutative diagram via the naturality of the map under
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consideration for (vi): the diagram

0 // HomA(M,M ′)∼ //

��

HomA(A⊕s,M ′)∼ //

��

HomA(A⊕r,M ′)∼

��

0 // H omOX
(M̃, M̃ ′) // H omOX

(O⊕sX , M̃ ′) // H omOX
(O⊕rX , M̃ ′)

commutes. In this diagram, the second and third vertical arrows are isomorphisms by the
settled case of A⊕n’s, so the first arrow induced between the kernels along the top and bottom
must be an isomorphism (check!). �

2. Globalization

For a general scheme X and OX-module F , we want to consider the condition that on
“enough” or “all” affine opens U = Spec(A) ⊂ X, the restriction F |U arises from an A-
module. The possible ways to make this precise are equivalent:

Theorem 2.1. The following are equivalent:

(i) For some open cover {Ui} of X, each F |Ui
is a cokernel of a map O⊕IiUi

→ O⊕JiUi
for

some index sets Ii, Ji.

(ii) There is an affine open cover {Ui = Spec(Ai)} of X such that F |Ui
' M̃i for some

Ai-module Mi for all i.

(iii) For every affine open U = Spec(A) ⊂ X, F |U ' M̃ for some A-module M .

Proof. Certainly (iii) implies (i) (take Ui to vary over all affine opens, and build the cokernel
presentation from a free module presentation for each Mi as a cokernel of some map F ′i → Fi

between free Ai-modules, remembering that the functor (̃·) is exact). Also, (i) implies (ii) by
refining the cover in (i) to an affine open cover so we arrange each Ui = Spec(Ai) is affine,

and then use the full faithfulness and compatibility with arbitrary direct sums for (̃·) to get
that the map O⊕IiUi

→ O⊕JiUi
arises from a linear map A⊕Iii → A⊕Jii . The cokernel Mi of this

latter map then satisfies M̃i ' F |Ui
by exactness of (̃·).

Finally, the real work is to show (ii) implies (iii). Since M̃i|D(ai) ' (̃Mi)ai for any ai ∈ Ai,
by the Nike trick and quasi-compactness of Spec(A) we can reduce to the situation that X =
Spec(A) is affine and covered by finitely many basic affine opens U1 = Spec(Aa1), . . . , Un =

Spec(Aan) with F |Uj
' M̃j for some Aaj -module Mj for j = 1, . . . , n. The aim is to show

F ' M̃ for some A-module M . Actually, there is no mystery what M has to be: we have

to use M = F (X) (since Ñ(X) = N for any A-module N), and we want to show that the
natural map

(4) ϕF : M̃ = F (X)∼ → F

(corresponding to the identity map M → F (X) on global sections) is an isomorphism.
The merit of studying a canonical map like ϕF is that we’re not trying to build global

things but rather prove properties about maps we already have in hand; this is generally
a simpler thing to do. To show (4) is an isomorphism over X, it suffices to show it is
an isomorphism of sheaves after restriction over each member Uj = Spec(Aaj) of an open



4

cover of X. We know that each ϕ|F |Uj
is an isomorphism since F |Uj

' M̃j actually arises

from an Aj-module (and the construction in (4) is an isomorphism for the output of the

(̃·) construction for modules over any ring). Hence, everything comes down to showing that
the formation of ϕF is suitably compatible with restriction over basic affine opens D(a) for
a ∈ {a1, . . . , an}.

To be precise, for any a ∈ A, via the natural map F (X)→ F (D(a)) over A→ Aa, we get
a map of Aa-modules θa : F (X)a → F (D(a)), and so it makes sense to form the diagram

(F (X)a)
∼ //

''

F (D(a))∼

��
F |D(a)

comparing ϕF |D(a) and ϕ(F |D(a)). This diagram commutes because the two routes from upper-

left to lower-right amount to two maps of the form Ñ → F |D(a) for a common Aa-module
N , and checking the equality of such maps can be done on global sections, where it is clear
by the way the top horizontal map was defined.

Hence, our sheaf isomorphism problem reduces to this: is θa = θF ,a : F (X)a → F (D(a))
an isomorphism for a ∈ {a1, . . . , an}? In fact, we’ll show it is an isomorphism for every
a ∈ A. The key is to use the left-exact sequence

0→ F (X)→
∏

F (D(ai))→
∏

F (D(aiaj))

coming from F being a sheaf. The direct products are over finite index sets, so they commute
with localization at a. Likewise we get the left-exact sequence

(5) 0→ F (X)a →
∏
i

F (D(ai))a →
∏
i,j

F (D(aiaj))a.

For any ring B and B-module N , the natural map Ñ(Spec(B))b → Ñ(D(b)) is an isomor-
phism since both sides are compatibly identified with Nb, so applying this to B = Ai and

the sheaf F |D(ai) ' M̃i we see that the natural map θF |D(ai)
,a/1 : F (D(ai))a → F (D(aia))

is an isomorphism (viewing a as a/1 ∈ Aai). In this way the right map in (5) is identified
with ∏

i

F (D(aia))→
∏
i,j

F (D(aiaja)),

which is the “overlap map” associated to the sheaf F |D(a) and open cover of D(a) = Spec(Aa)
given by the opens D(a) ∩ Ui = D(aai).

In other words, by the sheaf axioms, the kernel of the right map in (5) is identified with
F (D(a)). But we also identified that kernel with F (X)a. The resulting identification of
F (X)a and F (D(a)) is exactly via the map θa (since it can be checked after we compose
back to F (X) – do it!), so θa is an isomorphism. �


