
Math 216A. Connected and irreducible components, and dimension for schemes

1. Introduction

A noetherian topological space has a finite “irreducible component decomposition”. Since
irreducible spaces are obviously connected (as all non-empty open subsets are dense, so no
separation is possible), we see that noetherian spaces have finitely many connected com-
ponents, obtained from chains of irreducible components where each touches another. In
particular, the connected components are open (as for any “locally connected” topological
space). Using commutative algebra, we also set up a reasonable theory of dimension for
affine algebraic sets in terms of chains of irreducible closed sets.

The aim of this handout is to provide the appropriate analogous concepts for general
schemes, and relations between geometric definitions and commutative algebra. Beware that
with general schemes, these notions will not always behave as nicely as in the classical case
(much as is the case with dimension theory for general commutative rings, which behaves far
better under noetherian and other hypotheses). We will provide some indications about what
is true in general or is true under mild hypotheses, and give some “weird counterexamples”.

2. Connected components

For any non-empty topological space, by definition the connected components are the
maximal connected subsets, all of which are closed (since the closure of a connected subset
is connected). The connected components provide a partition fo the space, and they are all
open precisely when every point has a connected neighborhood.

For example, a locally noetherian topological space (i.e., a space for which every point
has a noetherian open neighborhood) has a connected neighborhood of every point since this
clearly holds for a noetherian topological space (due to the existence of the finite “irreducible
component decomposition” of such a space, combined with the connectedness of irreducible
spaces). But a general scheme can have non-open connected components, as the following
crazy example shows. This doesn’t matter too much in practice, since most schemes one
works with in a concrete way are locally noetherian.

Example 2.1. Let R =
∏

i∈I ki be an infinite direct product of fields ki. This is not noetherian
since the ideal J of elements that are 0 in all but finitely many entries is not finitely generated
(why not?). The space X = Spec(R) is quasi-compact, as for any commutative ring, and
each factor field ki gives rise to an open and closed point xi = Spec(ki) of Spec(R) (since
direct factor rings always give rise to a separation). This is an infinite collection of open and
closed points, so each is a connected component of X.

The infinitude of this collection of open points and the quasi-compactness of X implies
that there are other points of X! It is basically impossible to “explicitly write down” such
points (e.g., any maximal ideal m containing J as defined above is such an exotic closed point,
but one can’t write down such an m explicitly). Since the {xi}’s are connected components
which don’t cover X, there must exist other connected components C of X. By design, C
doesn’t contain any xi (since connected components are pairwise disjoint).

Let’s show that all such C are not open. It suffices to show more generally that any
non-empty open subset U of X contains some xi. A base for the topology of X is given
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by basic affine opens, so it suffices to show that any non-empty Spec(Rr) contains some
xi. Since Spec(Rr) is non-empty, certainly r 6= 0. Thus, as an element of R =

∏
ki, r has

non-vanishing entry in some ki0 . But the projection R → ki is exacty the evaluation map
O(X)→ k(xi) (check!), so it follows that r(xi0) 6= 0. Hence, xi0 ∈ Spec(Rr).

3. Irreducible components

For a non-empty scheme X, an irreducible component of X is an irreducible closed subset
Z of X that is maximal as such (i.e., Z is not strictly contained in another irreducible
closed set). The argument used in point-set topology to show that every point of a non-
empty topological space lies in a connected component (so in particular, maximal connected
subsets exist!) doesn’t carry over so easily in geometric language.

So to show the same for irreducible components (in particular, that they exist!) we will
turn the problem into a task in ring theory that is solved via Zorn’s Lemma (as usual for
such exotic generality). As a preliminary step, we want to relate the irreducible closed sets
Z of X containing a chosen point x ∈ X to prime ideals in a ring. Inspired by the classical
setting, we prove:

Lemma 3.1. For x ∈ X, there is an inclusion-reversing bijection between the set of irre-
ducible closed subsets Z ⊂ X containing x and the set of prime ideals of OX,x.

Writing IZ ⊂ OX for the “radical” ideal sheaf corresponding to Z, the bijection assigns
to Z the (prime!) ideal IZ,x ⊂ OX,x, and it assigns to any prime ideal q ⊂ OX,x the closure
in X of the point ix({q}) where ix : Spec(OX,x)→ X is the natural map.

Proof. First we reduce to the case of affine X, where everything becomes more tangible in
terms of algebra. Pick an affine open subset U ⊂ X around x. For any irreducible closed
subset Z ⊂ X passing through x ∈ U , the open subset Z ∩ U in the irreducible Z is non-
empty (as x ∈ Z ∩ U) and hence dense in Z. Thus, the closure of Z ∩ U in X is equal to
Z, so via the identifications OX,z = OU,z and IZ |U = IZ∩U inside OX |U = OU we see that if
the proposed recipes define inverse inclusion-reversing bijections for (U, x) then they do for
(X, x). Hence, we can replace X with U so that now X = Spec(A) is affine.

Let p ⊂ A be the prime ideal corresponding to x. The irreducible closed sets in X =
Spec(A) are exactly the subsets V (q) = Spec(A/q) ⊂ Spec(A) for prime ideals q ⊂ A, so the
irreducible closed sets passing through x are precisely V (q) for primes q satisfying {p} ∈ V (q)
or equivalently q ⊂ p. By the theory of localizations of rings, prime ideals of A contained in
p (i.e., disjoint from A − p) correspond exactly to prime ideals of Ap = OX,x via q 7→ qAp.
Via the labeling by primes ideals of A contained in p, we thereby get a bijection between
the set of irreducible closed subsets of Spec(A) passing through x = p and the set of prime
ideals of Ap via V (q) 7→ qAp. This is inclusion-reversing since

V (q) ⊂ V (q′)⇔ q′ ⊂ q⇔ q′Ap ⊂ qAp.

Since ix : Spec(Ap) → Spec(A) corresponds to the natural ring map A → Ap under
which the contraction of qAp is equal to q for prime ideals q ⊂ A contained in p, we have
ix({qAp}) = {q} and this has closure V (q). In the reverse direction, if Z = V (q) for a prime
ideal q ⊂ A contained in p and j : Z → X is the natural closed immersion (with Z given
its reduced structure) then IZ := ker(OX → j∗(OZ)) has x-stalk ker(Ap → (A/q)p) = qp =
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qAp. This establishes that the desired recipes in both directions define inverse bijections of
sets. �

The dictionary in Lemma 3.1 can be used to create maximal irreducible closed sets, as
follows. By Exercise 2.9 in HW5, every irreducible closed set Z in a scheme has a unique
generic point ηZ (i.e., a unique point in Z whose closure in the ambient scheme is equal to
Z). Topological spaces with this purely topological property are called sober (I have no clue
where this terminology comes from, but it is the standard name). The maximality of Z in
X can be cleanly characterized in terms of the local ring OX,ηZ :

Lemma 3.2. An irreducible closed subset Z ⊂ X is maximal if and only if OX,ηZ is 0-
dimensional, or equivalently if and only if the maximal ideal in OX,ηZ consists of nilpotent
elements (i.e., this maximal ideal is the only prime ideal of that local ring). In particular,

if ξ ∈ X is any point and Y = {ξ} is the associated irreducible closed set in X then it is
maximal as such if and only if OX,ξ is 0-dimensional.

Proof. A closed subset of X contains Z if and only if it contains the generic point ηZ of
Z (why?), so by Lemma 3.1 applied to x = ηZ we obtain an inclusion-reversing bijection
between the set of irreducible closed subsets of X containing Z and the set of prime ideals of
OX,ηZ . In particular, maximality of Z in X is equality to minimality in OX,ηZ of the prime
ideal corresponding to Z. (A minimal prime ideal in a ring is one that doesn’t strictly contain
another prime ideal.) But this latter prime ideal is the maximal ideal of OX,ηZ (why?), so
the maximality of Z in X is equivalent to the maximal ideal of OX,ηZ being a minimal prime
ideal, which is to say that it is the only prime ideal of that local ring. This in turn is precisely
the 0-dimesionality. �

For any x ∈ X and prime ideal q of the local ring OX,x with associated irreducible closure
Z in X through x, the local ring OX,ηZ of interest in Lemma 3.2 is exactly (OX,x)q. Indeed,
to check this it suffices to work in an open affine Spec(A) around x in X, and if p ⊂ A
corresponds to x and ℘ is the prime ideal of A contained in p corresponding to q ⊂ Ap

then the proposed description of OX,ηZ becomes the unique identification (Ap)q = A℘ as
A-algebras.

We conclude that maximality of Z in X corresponds to 0-dimensionality of (OX,x)q, which
is to say the minimality in OX,x of the prime ideal q corresponding to Z via the recipe in
Lemma 3.1. This is interesting since the maximality of Z in X has nothing whatsoever to do
with x whereas the minimalty condition on q very much involves x since q is a prime ideal
of the local ring OX,x at x! Now we have harnessed everything we need to quickly prove:

Theorem 3.3. Every non-empty scheme X has irreducible components, and every point
x ∈ X is contained in one. Moreover, the set of irreducible components of X passing through
x is in bijective correspondence with the set of minimal prime ideals of OX,x.

Proof. The preceding discussion shows that the set of irreducible components of X passing
through a point x ∈ X is in bijection with the set of minimal primes of the local ring at x,
so to complete the proof we just have to show that every nonzero ring A contains minimal
prime ideals. This is a standard application of Zorn’s Lemma (applied to the non-empty set
of prime ideals of A ordered by reverse inclusion). �
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Remark 3.4. For every irreducible closed set Z in X, the irreduble components of X con-
taining Z correspond to the minimal primes of OX,ηZ , so in particular there do always exist
irreducible components of X containing any given irreducible closed subset of X.

In the special case that X is locally noetherian, the set of irreducible components is “locally
finite” in the sense that every point x ∈ X has an open neighborhood U ⊂ X meeting only
finitely many irreducible components of X. Indeed, since a non-empty open subset of an
irreducible space is dense we can shrink U to be affine and then it suffices to show for any
noetherian ring A that there are only finitely many minimal primes. This just expresses the
finite “irreducible component decomposition” of the noetherian topological space Spec(A).

Example 3.5. Let’s return to the “weird example” X = Spec(R) from Example 2.1, so
R =

∏
ki is a direct product of infinitely many fields ki. We have seen that X has non-open

connected components. Its set of irreducible components is also not locally finite. Indeed,
if it were locally finite then by quasi-compactness of X there would be only finitely many
irreducible components. But there are infinitely many points that are both closed and open
(so in particular are certainly irreducible components!), so local finiteness must fail.

4. Dimension

We have now shown that any non-empty scheme contains irreducible components through
every point, and we are going to use irreducible closed sets to create a theory of dimension.
Motivated by the classical case, for any non-empty scheme X we define

dimX = sup{n ≥ 0 | there exist irreducible closed subsets Z0 ( Z1 ( · · · ( Zn ⊂ X}.
There is no harm in requiring Zn to be an irreducible component of X since every irre-
ducible closed set is contained in one (so dimX = supi dimXi for {Xi} the set of irreducible
components of X; note that each Xi has a natural reduced closed subscheme structure).

But one can’t always require Z0 to be a point since for a general X it isn’t actually clear
if there are any closed points! (Any non-empty affine open has a closed point due to the
existence of maximal ideals, but a closed subset of an open subset may not be closed in the
ambient space.) The following result provides an abundant supply of closed points in the
quasi-compact case, so when X is quasi-compact we can take Z0 to be a closed point when
analyzing dimX.

Proposition 4.1. Every non-empty closed subset Z of a quasi-compact scheme X has a
closed point.

Beware that there exist integral schemes without any closed point (built as the complement
of the closed point in the spectrum of a rather bizarre non-noetherian local domain; of course,
removing the closed point doesn’t by itself prevent the resulting open subscheme from having
its own closed points!). In practice one never has to worry about this.

Proof. We aim to argue topologically for as much as possible, postponing until near the end
that X is a scheme (rather than merely a quasi-compact topological space). First we claim
via Zorn’s Lemma that minimal non-empty closed subsets of Z exist (i.e., closed subsets of
Z with no non-empty proper closed subset). Indeed, consider the set Σ of non-empty closed
subsets of Z ordered via reverse inclusion. For example, Z ∈ Σ. We want to show that Σ has

http://math.stanford.edu/~vakil/files/schwede03.pdf
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maximal elements, so by Zorn’s Lemma it suffices to show that for any collection {Zα} of
non-empty closed subsets for which any two have one contained in the other, the intersection⋂
α Zα is non-empty.
Suppose to the contrary that the intersection is empty. Then the open complements

Uα = X −Zα cover X, so by quasi-compactness of X we have that some finite subcollection
Uα1 , . . . , Uαn covers X. This says Zα1 ∩· · ·∩Zαn is empty. But for any two Zα’s we are given
that one is inside the other, so the intersection of any finite collection of Zα’s is equal to one
of them. This forces all finite intersections among the Zα’s to be non-empty (as the Zα’s are
all non-empty by design), so we have reached a contradiction. Hence,

⋂
α Zα is non-empty

as desired, so Zorn’s Lemma applies.
Now we can pick a minimal non-empty closed subset Z0 in Z. We claim that any such

minimal Z0 is a point. Since X is a scheme, we can give Z0 the reduced scheme structure.
Pick a non-empty affine open subset U ⊂ Z0. The complement Z0 − U is a proper closed
subset of Z0. By the minimality of Z0, it follows that Z0 − U is empty, so Z0 = U is affine.
The ring A for Z0 is reduced and Spec(A) has no non-empty proper closed subset, so for
any proper ideal I of A we have Spec(A/I) = Spec(A). This says I consists of nilpotent
elements, but A is reduced, so I = (0). A ring for which (0) is the only proper ideal is a field
(by definition, in effect), so A is a field and hence Z0 is a point as desired. �

By the definition, if X = Spec(A) is affine then dimX is the supremum of the “length” of
finite chains of distinct prime ideals of A. The latter is the definition of dimA in commutative
algebra (it can be infinite even for a noetherian ring, but Krull proved noetherian local rings
always have finite dimension; many other classes of non-local noetherian rings also have finite
dimension, as one learns with experience). Hence, dim(Spec(A)) = dimA. Using Lemma
3.1, one also obtains the formula (please check!)

dimX = sup
x∈X

dim OX,x

(even if some of the local rings have infinite dimension).
There is also a good notion of codimension, but we have to set it up correctly so it makes

sense even in the infinite-dimensional case. That is, we cannot define the codimension in X of
a closed subset Y to be dimX − dimY since it could happen that both of those dimensons
are infinite. Instead, we proceed as follows. For an irreducible closed subset Y ⊂ X, we
define codim(Y,X) to be

sup{n ≥ 0 | there exist irreducible closed subsets Y = Z0 ( Z1 ( · · · ( Zn ⊂ X}

(this can be infinite). For example, if Y is an irreducible component of X then codim(Y,X) =
0 even if X has irreducible components with bigger dimension than Y . Think about it.

Note that when making this definition, there is no harm in limiting attention to chains of
irreducibles with Zn an irreducible component of X (since every irreducible closed subset of
X is contained in one). For general non-empty closed Y ⊂ X with {Yi} its set of irreducible
components (we view Y as a non-empty scheme via the reduced structure, so the preceding
work on irreducible components is applicable to the topological space Y ), we define

codim(Y,X) = inf
i

codim(Yi, X)
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(this is infinite only when all codim(Yi, X) are infinite). It isn’t quite clear what is a good
definition for codim(∅, X); if the preceding “inf” definition is applied to Y = ∅ (so its set
of irreducible components is empty) then according to some conventions in logic we have
codim(∅, X) =∞ (this is also noted in [EGA 0IV, §14.2]). Fortunately one never really has
to bother with weirdness such as the codimension of the empty set.

Example 4.2. If X is irreducible of finite type over a field k and Y is any closed subset then
by Exercise 3.20(d) in HW6 (not due for submission) we have dimY +codim(Y,X) = dimX;
in other words, codim(Y,X) = dimX−dimY for irreducible X. This expresses in geometric
terms some general facts concerning chains of prime ideals in polynomial rings over a field.
As an illustration, if k is a field and Y ⊂ X := A3

k is a reduced closed subset with irreducible
components given by an irreducible surface S and an irreducible curve C then

codim(Y,X) = inf(codim(S,A3
k), codim(C,A3

k)) = inf(3− 2, 3− 1)

= 3− 2

= dim(X)− dim(Y ).

In contrast, with the reducible Y and its irreducible closed subset C we have codim(C, Y ) =
0 because C is an irreducible component of Y yet dimY − dimC = 2 − 1 = 1. Thus, be
careful when working with codimension in the presence of reducible schemes (or at least with
a non-empty closed subset whose irreducible components have varying codimensions).

Example 4.3. If Y is an irreducible closed subset of X with generic point ηY then the study of
codim(Y,X) is completely controlled by the prime ideal structure of OX,ηY due to Lemma 3.1.
More specifically, Lemma 3.1 implies codim(Y,X) = dim OX,ηY , so for a locally noetherian
scheme X this codimension is always finite (in view of Krull’s theorem that local noetherian
rings have finite dimension) even though dimX may be infinite for noetherian X.

For affine algebraic sets X and irreducible closed subsets Y we saw that there exists a
chain of irreducible closed sets Y = Z0 ( · · · ( Zn ⊂ X with n = codim(Y,X) for which any
two desired irreducible closed subset Z ⊂ Z ′ containing Y appears among the Zj’s in such
a chain. By Example 4.3, whether or not such good behavior for codimension holds for a
given locally noetherian scheme X is completely controlled by how well-behaved dimension
theory is for the local rings of X: for each x ∈ X, can one find a chain of primes in OX,x

with length dim OX,x for which any two prime ideals p ⊂ q occur in the chain? When this
holds we say X is catenary.

We know from the algebraic part of the earlier codimension handout that schemes locally
of finite type over a field are catenary. Hard work in commutative algebra shows that nearly
all noetherian rings one encounters are catenary (e.g., every ring finitely generated over a
Dedekind domain or over a complete local noetherian ring is catenary, as is the local ring
of convergent power series in n variables over any field complete for a non-trivial absolute
value). But catenarity can fail for some noetherian rings. These matters are discussed quite
thoroughly in [Mat, §31].
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