
Math 216A. Further properties of M̃ for graded M

1. Setup and Hom

Let S be an N-graded ring, and M and N two Z-graded S-modules. (At the outset
we don’t assume S is generated by S1 over S0, but we will eventually impose this.) Let
X = Proj(S).

For homogeneous f ∈ S we discussed in class that there is a natural map M(f)⊗S(f)
N(f) →

(M ⊗S N)(f) that is an isomorphism when f ∈ S1. In particular, there is always a natural
map

(1) M̃ ⊗OX
Ñ → (M ⊗S N)∼

that is an isomorphism over D+(f) for f ∈ S1. Hence, as we discussed in class, (1) is an
isomorphism when S is generated by S1 over S0.

On affine schemes, Hom and sheaf-Hom have been related through the functor from mod-
ules to quasi-coherent sheaves, and pullback and pushfoward under affine maps have been
related to specific operations on modules. Our first aim is to establish analogues of those
results in the graded setting. A new wrinkle is that (unlike tensor products) there isn’t
generally a grading on HomS(M,N) and (unlike for Spec) Proj isn’t generally a functor for
graded ring homomorphisms. We first focus on the situation with Hom, since it doesn’t get
involved with functoriality of Proj.

Definition 1.1. For k ∈ Z define Homk
S(M,N) to be the set of graded S-linear maps

M → N(k) (i.e., S-linear maps u : M → N such that u(Mr) ⊂ Nr+k for all r ∈ Z,
sometimes called “maps of degree k”). Define

Hom∗S(M,N) :=
⊕
k∈Z

Homk
S(M,N).

In [EGA II, 2.1.2] the construction Hom∗S(M,N) is denoted as HomS(M,N), but we avoid
that since it does not generally agree with the usual meaning of the latter notation. However,
we will soon see that Hom∗S(M,N) is always naturally an S-submodule of HomS(M,N) and
that the two coincide under some finiteness hypotheses on M . Note that Definition 1.1 even
makes sense for Z-graded S (not just N-graded S), such as the ring Tf for homogeneous f
in an N-graded T ; this will be useful later.

If f ∈ Sd and u ∈ Homk
S(M,N) then fu : M → N shifts degrees by k + d (i.e., fu ∈

Homk+d
S (M,N)), so the Z-graded Hom∗S(M,N) is naturally a graded S-module. There is an

evident S-linear map

(2) Hom∗S(M,N)→ HomS(M,N)

by sending (uk)k to
∑

k uk : m 7→
∑

k uk(m) (which makes sense since uk = 0 for all but
finitely many k).

Lemma 1.2. The map (2) is injective.

Proof. Pick a finite collection of elements uj ∈ Hom
kj
S (M,N) for pairwise distinct kj’s. The

S-linear map u =
∑
uj : M → N satisfies u(md) =

∑
j uj(md) for md ∈ Md, with elements
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uj(md) ∈ N that are homogeneous with pairwise distinct degrees d + kj. Hence, the only
way their sum can vanish in N is when uj(md) = 0 for all j. Thus, if u = 0 then all uj
vanish on every Md, so the desired injectivity holds. �

Lemma 1.3. If M is finitely presented as an S-module (i.e. it is the cokernel of a map
between finite free S-modules – this has nothing to do with the grading) then the inclusion
Hom∗S(M,N) ↪→ HomS(M,N) is an equality. In other words, every S-linear M → N is a
uniquely a sum of finitely many graded maps M → N(kj).

Remark 1.4. The proof of this lemma only needs that S is Z-graded rather than N-graded.

Proof. By definition, a finitely presented module over ring admits some surjection from a
finite free module for which the kernel is finitely generated. But in fact then every surjection
from a finite free module has a finitely generated kernel [Mat, Thm. 2.6]. Thus, upon choosing
a graded surjection (as we may) S(d1)⊕· · ·⊕S(dm) �M , the Z-graded kernel is also finitely
generated and hence is a quotient of another such direct sum. In other words, a finitely
presented graded S-module is also finitely presented in a graded sense: it is a cokernel of a
graded linear map between two finite direct sums of S(d)’s.

Both functors Hom∗S(·, N) and HomS(·, N) carry right exact sequences of graded maps of
graded S-modules to left-exact sequences. Thus, upon choosing a “finite graded presenta-
tion” (as we just saw can always be found)⊕

j

S(nj)→
⊕
i

S(di)→M → 0

we can apply both functors to arrive at a commutative diagram

0 // Hom∗S(M,N)

��

// Hom∗S(⊕S(di), N)

��

// Hom∗S(⊕S(nj), N)

��
0 // HomS(M,N) // HomS(⊕S(di), N) // HomS(⊕S(nj), N)

with all vertical maps injective (Lemma 1.2). Hence, to show the first vertical arrow is an
isomorphism it suffices to show the same for the other two. That is, we are reduced to the
case M is a finite direct sum of S(d)’s.

Everything in sight behaves well for direct sums, so we can assume M = S(d) for some
d ∈ Z. We have Hom∗S(S(d), N) = N(−d) (chase graded parts) and HomS(S(d), N) =
HomS(S,N) = N , and this identifies the inclusion Hom∗S(S(d), N) → HomS(S(d), N) with
the inclusion j : N(−d) ↪→ N that carries N(−d)r = Nr−d into N via the natural inclusion.
Summing these over all r ∈ Z yields j as the natural identity map on underlying abelian
groups. �

To express how Hom and sheaf-Hom are related in the graded setting, we shall first build
an OX-linear map

(3) θ : Hom∗S(M,N)∼ →H omOX
(M̃, Ñ)

without hypotheses on S or M , and then will see that it is an isomorphism under some
mild hypotheses. To define θ, we will build a map between sections over D+(f) for all
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homogeneous f ∈ S+ (i.e., f ∈ Sd for some d > 0) and then consider compatibility under
change in f (to ensure the constructions glue to a map between sheaves on X). Warning:
remember that sheaf-Hom applied to quasi-coherent sheaves is generally not quasi-coherent.

Building θ on sections over D+(f) amounts to making an S(f)-linear map

Hom∗S(M,N)(f) → HomD+(f)(M̃ |D+(f), Ñ |D+(f)) = HomD+(f)(M̃(f), Ñ(f)).

But (̃·) is a functor from modules to quasi-coherent sheaves on any affine scheme, so the right
side here receives a natural map from HomS(f)

(M(f), N(f)). Thus, to define θ on sections

over D+(f) it suffices to build an S(f)-linear map Hom∗S(M,N)(f) → HomS(f)
(M(f), N(f)).

Naturally one has

Hom∗S(M,N)(f) ⊂ Hom∗S(M,N)f ⊂ HomS(M,N)f → HomSf
(Mf , Nf )

via the functoriality of localization for the final step. A direct calculation with the defini-
tion of Hom∗S(M,N) shows that this composite map lands inside the set of Sf -linear maps
Mf → Nf that respect the Z-gradings on Mf and Nf , so in particular carries M(f) into
N(f) (necessarily S(f)-linearly). In this way we define θ on sections over D+(f). From the
construction one computes that it behaves well with respect to restriction along an inclusion
of open sets D+(fg) ⊂ D+(f), so it defines the sheaf map θ.

Proposition 1.5. If M is a finitely presented S-module (so Hom∗S(M,N) = HomS(M,N)
by Lemma 1.3) and S is generated by S1 over S0 then θ in (3) is an isomorphism.

Proof. Let’s check that under the given hypotheses on S and M , the source and target of
θ are quasi-coherent. For the source it is by design, and for the target it is because (by
reducing to the affine case) for any scheme Y the sheaf H omOY

(F ,G ) is quasi-coherent
for G that is quasi-coherent and F that is “finitely presented”: locally a cokernel of a map

between finite free sheaves (e.g., M̃ on X is finitely presented, as seen by expressing M as a

cokernel of a map between S(d)’s and using the local freeness of each S̃(d) due to S being
generated by S1 over S0!).

Thus, to check the isomorphism property it suffices to check bijectivity between sets of
sections over the members of a single open cover of X, such as on the D+(f)’s for elements
f ∈ S1. For much of what follows we will use only that f is homogeneous; that it is in degree
1 will be used at the end of the proof.

The map on D+(f)-sections has the form

HomS(M,N)(f) → HomS(f)
(M(f), N(f))

(for the target, we are using that the functor (̃·) from modules to quasi-coherent sheaves
on any affine scheme, such as Spec(S(f)), is fully faithful); we want to show this is an
isomorphism. The source is the degree-0 part of HomS(M,N)f (which has a Z-grading
by Remark 1.4), and the target receives a map from Hom0

Sf
(Mf , Nf ) (the set of Z-graded

maps over the Z-graded ring Sf ). Since M is a finitely presented S-module, the functor
HomS(M, ·) on S-modules (no grading) commutes with any localization, so naturally

(4) HomS(M,N)f ' HomSf
(Mf , Nf ).
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The source and target in (4) are naturally Z-graded (using Remark 1.4 for the target), and
the map (4) respects the gradings, so it is an isomorphism of graded modules (as any graded
map that is an isomorphism on underlying abelian groups has a graded inverse). In this way
HomS(M,N)(f) is identified with (not just receives a map from!) Hom0

Sf
(Mf , Nf ).

The effect of θ on D+(f)-sections is now identified with the natural map

θ0f : Hom0
Sf

(Mf , Nf )→ HomS(f)
(M(f), N(f))

that assigns to a graded homomorphism its effect on degree-0 parts, so our task is reduced
to showing that θ0f is an isomorphism for any finitely presented graded S-module M and

any f ∈ S1. Both source and target of θ0f carry a right-exact sequence in M ’s (with graded
maps) to a left-exact sequence. Thus, by the same argument as in the proof of Lemma 1.3
(using that M is finitely presented) we reduce to the case M = S(d) for some d ∈ Z.

With M = S(d), the source of θ0f is identified with the part of Nf in degree −d (since
S(d)f = Sf (d) and for a Z-graded module P over a Z-graded ring T – such as the Sf -module
Nf – the graded maps T (d) → P are exactly t 7→ tp for unique p ∈ P−d). The target of θ0f
is HomS(f)

(S(d)(f), N(f)) and S(d)(f) is identified with the part of Sf in degree d, so θ0f is
identified with a map

αf,d : (Nf )−d → HomS(f)
((Sf )d, N(f))

that is readily checked to be the one arising from (Nf )−d⊗S(f)
(Sf )d → Nf (via multiplication).

Hence, it suffices to show that the maps αf,d are isomorphisms.
Now we finally use crucially that f has degree 1: it ensures (check!) (Sf )d is a free

S(f)-module with basis fd. Likewise, (Nf )−d ' N(f) as S(f)-modules via the S(f)-linear
automorphism of Nf defined by multiplication by fd. In this way, αf,d is identified with the
map N(f) → HomS(f)

(S(f), N(f)) given by ν 7→ (h 7→ hν) that is obviously an isomorphism.
�

2. Interaction with Proj “functoriality”

Having dealt with Hom and sheaf-Hom, we next relate M̃ for graded M with pushforward
and pullback. The main initial issue is that Proj is not functorial as Spec is. Consider
a general map ϕ : S → T of N-graded rings. Let U ⊂ Proj(T ) be the open subscheme
complementary to V (ϕ(S+)T ). In our initial discussion of Proj in class, we built a map
schemes f : U → Proj(S) given on underlying sets by p 7→ ϕ−1(p) and defined at the level
of ringed spaces gluing the maps

Spec(T(ϕ(s))) = D+(ϕ(s))→ D+(s) = Spec(S(s))

for homogeneous s ∈ S+ arising from S(s) → T(ϕ(s)) defined by applying the graded map ϕ
to degree-0 fractions.

The compatibility of (̃·) on graded modules with the functors f∗ and f ∗ on sheaves takes
on the following form that is reminiscent of the affine case with Spec.

Proposition 2.1. Let M be a graded S-module and N a graded T -module.

(i) There is a natural map f ∗(M̃)→ (T ⊗SM)∼|U , and it is an isomorphism when S is
generated by S1 over S0 (no hypotheses on T ).
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(ii) For the associated “underlying” graded S-module SN via composition with ϕ, there

is a natural isomorphism S̃N ' f∗(Ñ |U). (No hypotheses on S or T .)

Proof. Note that f is an affine map: its target Proj(T ) is covered by affine opens D+(s) for
homogeneous s ∈ S+, and f−1(D+(s)) = D+(ϕ(s)) since f on underlying sets is given by
p 7→ ϕ−1(p). Hence, by our knowledge about pullback and pushforward for quasi-cohernt
sheaves relative to affine morphisms, in both (i) and (ii) the desired maps will at least go
between quasi-coherent sheaves.

The desired maps will be built by gluing over an affine open cover. For (ii), if s ∈ S+ is
homogeneous then since f−1(D+(s)) = D+(ϕ(s)) we see that over D+(s) the isomorphism we
want to make between quasi-coherent sheaves corresponds to an isomorphism of S(s)-modules
(SN)(s) → S(s)

(N(ϕ(s))): there is an evident such isomorphism arising from the effect of the

natural graded (!) isomorphism of graded Ss-modules (SN)s → Ss(Nϕ(s)) when restricted
to degree-0 parts, and these isomorphisms in degree 0 are easily compatible with inclusions
D+(ss′) ⊂ D+(s) for homogeneous s, s′ ∈ S+. This settles (ii).

Now consider (i). By definition, U is covered by the affine open subschemes D+(ϕ(s)) for
homogeneous s ∈ S+. Over such an open set, the desired map must arise from a Tϕ(s)-linear
map

(5) Tϕ(s) ⊗S(s)
M(s) → (T ⊗S M)(ϕ(s)).

There is an evident such map defined via multiplication of degree-0 fractions, and these
are easily seen to glue to a global map in the usual way (comparing with open immersions
D+(ϕ(s)ϕ(s′)) ⊂ D+(ϕ(s)) for homogeneous s, s′ ∈ S+). This defines the map in (i) in
general.

It remains to show that the map in (i) is an isomorphism when S is generated by S1 over S0.
In such cases Proj(S) is covered by the affine opens D+(s) for s ∈ S1, so likewise U is covered
by the affine open preimages D+(ϕ(s)) for s ∈ S1. Hence, by quasi-coherence it suffices to
verify the isomorphism property between the modules of sections over such open subsets. In
other words, we want to show that if s ∈ S1 then the natural map of Tϕ(s)-modules in (5) is
bijective. For any graded S-module N there is a natural map N(s)⊗S(s)

M(s) → (N ⊗SM)(s)
which we know is bijective for s ∈ S1. Applying this to N = ST (viewing T as a graded
S-module via ϕ) then does the job. �

Example 2.2. Here is a useful application of part (ii) of the preceding result. Pick d > 0. The
grading on S(d) has all nonzero parts in degree divisible by d, so we can adjust the grading
by dividing it by d everywhere (so Sd is the “degree-1 part”); i.e., declare the degree-n part
to be Snd. This adjustment in the definition of the grading maps j no longer has no effect
on Proj, since what constitutes a homogeneous element or a degree-0 fraction is unaffected.
However, this shift in the grading makes S(d)(1) more interesting, since its degree-0 part is
now Sd (whereas with the initial grading coming from S it would vanish when d > 1). In
the Proj handout we built an isomorphism f : X = Proj(S) ' Proj(S(d)) = Xd using the
grading on S(d) coming from S.

If we use the grading after division by d then f isn’t coming from a map between the
resulting graded rings, but S(d)(1) is now Sd whereas before it was 0 when d > 1. Use this
“divided” notion of degree to define OXd

(1). We claim that f∗(OX(d)) ' OXd
(1) (so, since
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f is an isomorphism, likewise OX(d) ' f ∗(OXd
(1))). At the end of this example, we explain

the meaning of this isomorphism in the important case X = Pn
A for a rng A.

Since f comes from the map of graded rings S(d) ↪→ S when we don’t divide the degrees by
d on S(d), f∗(OX(d)) corresponds to the graded S(d)-module underlying the graded S-module
S(d) using the “non-divided” degree. We want to relate this to the graded S(d)-module S(d)(1)
in the “divided degree” setting, which is exactly S(d)(d) in the “non-divided” degree setting.
Making such division on the degree yields the same quasi-coherent sheaf on Xd (since there
is no effect on degree-0 fractions in module localizations at homogeneous elements of the
graded ring), so our task is finally reduced to the following in the “non-divided” degree
setting: show the inclusion M = S(d)(d) ↪→ S(d) = M ′ of graded S(d)-modules (when S(d) is
given its d-divisible degree from S) induces an isomorphism on the associated quasi-coherent
sheaves.

The functor (̃·) from graded modules to quasi-coherent sheaves is exact, so the natural

map M̃ → M̃ ′ is certainly injective. To show it is an equality, it suffices to analyze sections

over the base of opens D+(f) for homogeneous f ∈ S(d)
+ , which is to say that we want the

inclusion Mf → M ′
f of Z-graded S(d)-modules to be an equality on degree-0 parts. But

this is obvious: any degree-0 fraction m′/f r for homogeneous m′ ∈ M ′ can be written with
exponent r divisible by d, so then m′ viewed as an element of S(d) has degree divisible by
d, so it comes from S(d)(d).

Let’s now consider the special case S = A[t0, . . . , tn]. Here S(d) is the A-subalgebra of
polynomials only involving monomials of degree divisible by d, so it is generated by Sd
over A, and upon writing S(d) with its “divided” degree as a quotient of a polynomial ring
over A with one variable per degree-d monomial in the ti’s, we get a closed immersion of
ιd : Pn

A = X ' Xd ↪→ PN
A (the “d-uple embedding”) under which OPN

A
(1) pulls back to

OXd
(1) that we have seen is identified with OX(d).

By the universal property of PN
A from Exercise B in HW9, ιd corresponds to the line bundle

OX(d) equipped with its collection of global sections arising from the elements of S(d)0 = Sd
given by the degree-d monomials in S (these “generate” the line bundle stalkwise since even
just the power monomials tdj do the job: X = Pn

A is covered by the open affines D+(tdj ),

on which OX(d) corresponds to the S(tj)-module S(d)(tj) = S(tj)t
d
j ). The map ιd is given

on “homogeneous coordinates” by [ti] 7→ [Mα(t)] with Mα varying through the degree-d
monomials in the t’s, and the geometric meaning of the isomorphism OX(d) ' ι∗d(OXd

(1))
when A = k is a field is that any hyperplane in the target PN

k meets the source Pn
k in a

degree-d hypersurface, since if a linear form in the Mα’s is expressed in terms of the ti’s then
it becomes a homogeneous polynomial of dgeree d!

3. Relating Γ∗(·) and (̃·)

For X = Proj(S), we now discuss the relationship between the functor Γ∗ from OX-

modules to graded S-modules and the functor (̃·) from graded S-modules to quasi-coherent
OX-modules.

By definition in class, Γ∗(F ) =
⊕

n≥0 Γ(X,F (n)) with F (n) := F ⊗OX
OX(n); this was

made into a graded S-module via the map of N-graded rings αS : S → Γ∗(OX). In class,



7

when S is generated by S1 over S0 we built two maps: for any graded S-module M we made

a graded map αM : M → Γ∗(M̃), and for any OX-module F we made a map of OX-modules
βF : Γ∗(F )∼ → F . The link between these that we want to address here is:

Theorem 3.1. Assume S is generated by S1 over S0. Then for any graded S-module M ,

the composite map of sheaves M̃
α̃M−→ Γ∗(M̃)∼

β
M̃−→ M̃ is the identity map.

Proof. By quasi-coherence of M̃ , it suffices to check the effect is the identity map on sections
over the open subschemes D+(f) for homogeneous f ∈ S1, as these cover X due to the

hypothesis on S. This is an S(f)-linear map M(f) → Γ∗(M̃)(f) → M(f), so we just need to
chase the effect on a degree-0 fraction m/f r for homogenous m ∈ Mr. The first map is the

effect on degree-0 fractions arising from f -localization of the graded map αM : M → Γ∗(M̃)

between graded S-modules which in each degree n ≥ 0 carries Mn into Γ(X, M̃(n)) via the
map

Mn = M(n)0 → Γ(X, M̃(n)) ' Γ(X, M̃(n))

(final equality using that S is generated by S1 over S0).
Thus, we want to show that βM̃(αM(m)/f r) = m/f r on D+(f)-sections. By definition of

βF for general F , βM̃(αM(m)/f r) is defined using S(−r)(f) → Γ(D+(f),OX(−r)) applied
to f−r ∈ S(−r)(f). More specifically, it is the image of αM(m) ⊗ f−r under the composite
map

Γ(D+(f), M̃(r))⊗ Γ(D+(f),OX(−r))→ Γ(D+(f), M̃(r)⊗ OX(−r)) = Γ(D+(f), M̃),

the final step using again that S is generated by S1 over S0 in order to identify M̃(n) with

M̃(n) and to identify OX(−n) as dual to the invertible OX(n) for all n ≥ 0.
In other words, via the composite map

(6) M̃(r)⊗ S̃(−r) ' M̃ ⊗ S̃(r)⊗ S̃(−r)→ M̃ ⊗ (S(r)⊗S S(−r))∼ ' M̃

we want to show that the effect on D+(f)-sections carries αM(m) ⊗ f−r to m/f r. Since
f ∈ S1, the S(f)-module S(n)(f) is free of rank 1 with basis fn for all n ∈ Z. The isomorphism

M̃ ⊗ S̃(n) ' M̃(n) over D+(f) corresponds to the map

M(f) ⊗S(f)
(S(f)f

n)→M(n)(f)

defined by (µ/f q)⊗ (hfn) 7→ (h)(µfn−q).
Setting µ = m, q = r, n = r, and h = 1, we see that αM(m)|D+(f) ∈ M(r)(f) corresponds

to (m/f r) ⊗ f r. Thus, on D+(f)-sections the first step in (6) carries αM(m) ⊗ f−r to
(m/f r)⊗ f r⊗ f−r, and the second step in (6) carries this to (m/f r)⊗ (f r⊗ f−r) viewing fn

as an element of S(n)(f) = Γ(D+(f), S̃(n)) for any n ∈ Z. The multiplication isomorphism
S(r)⊗S S(−r)→ S of graded S-modules induces on degree-0 parts of f -localizations

S(r)(f) ⊗S(f)
S(−r)(f) = (S(r)⊗S S(−r))(f) → S(f)

(equality using that f ∈ S1) which carries f r ⊗ f−r to 1. Hence, (6) carries αM(m)⊗ f−r to

(m/f r) · 1 = m/f r ∈M(f) = Γ(D+(f), M̃), as desired. �


