1. Main results

Let S be an N-graded ring finitely generated over S_0 . Each generator is a finite sum of homogeneous elements, so we get a finite generating set consisting of homogeneous elements which we may assume are in positive degree (since anything in degree 0 belong to S_0 and hence is redundant for the purposes of a generating set over S_0). In other words, there is a graded surjection $S_0[X_0, \ldots, X_m] \twoheadrightarrow S$ where X_j is assigned some degree $\delta_j > 0$. Thus, we get a closed immersion

$$\operatorname{Proj}(S) \hookrightarrow \operatorname{Proj}(S_0[X_0, \dots, X_m])$$

into a "weighted projective space" over S_0 . But is $\operatorname{Proj}(S)$ actually projective over S_0 (i.e, a closed subscheme of some $\operatorname{Proj}(S_0[t_0, \ldots, t_q])$ where each t_j is homogeneous of degree 1)? One purpose of this handout is to give an affirmative answer.

It will be convenent to express most of our work in terms of graded modules, so let M be a **Z**-graded S-module that is finitely generated as an S-module. Any element of M is a finite sum of homogeneous elements, so M has a finite generating set over S consisting of homogeneous elements m_1, \ldots, m_r . If $d_j = \deg(m_j)$ (i.e., $m_j \in S_{d_j}$) then we have a graded S-linear maps $S(-d_j) \to M$ via $s \mapsto sm_j$, so a graded S-linear surjection

$$\pi: \bigoplus_{j=1}^r S(-d_j) \twoheadrightarrow M.$$

Recall that by definition

$$S^{(d)} = \bigoplus_{q \ge 0} S_{dq}, \quad M^{(d)} = \bigoplus_{q \in \mathbf{Z}} M_{dq}.$$

In $\S2$ we will prove:

Proposition 1.1. Let S and M be as above.

- (i) For sufficiently negative n we have $M_n = 0$, and for all n the S_0 -module M_n is finitely generated (e.g., S_n is S_0 -finite for all n).
- (ii) There exists $d_0 > 0$ depending only on S so that for all n sufficiently large depending on M, we have $S_{d_0}M_n = M_{n+d_0}$.
- (iii) For all d > 0 and $0 \le r \le d-1$, the $S^{(d)}$ -module $\bigoplus_{q \in \mathbf{Z}} M_{dq+r}$ is finitely generated. (Using r = 0, this implies $M^{(d)}$ is $S^{(d)}$ -finite for all d > 0.)
- (iv) For all d > 0, the **N**-graded S_0 -algebra $S^{(d)}$ is finitely generated. For some large d, $S^{(d)}$ is generated by S_d over S_0 (so likewise for all multiples of d).

The importance of (iv) is that for d big enough and divisible enough we have that the S_0 -algebra $S^{(d)} = \bigoplus_{q \ge 0} S_{dq}$ is generated by the S_0 -finite S_d , so if we redefine the $d\mathbf{Z}$ -valued degree on $S^{(d)}$ by dividing it by d (as we may) then $S^{(d)}$ is finitely generated in degree 1 over its degree-0 part. Hence, for such d we have a closed immersion $\operatorname{Proj}(S) \simeq \operatorname{Proj}(S^{(d)}) \hookrightarrow \mathbf{P}_{S_0}^N$ over S_0 . Thus, $\operatorname{Proj}(S)$ is projective over S_0 !

Here is an important application of parts (ii) and (iii).

Corollary 1.2. If S is finitely generated by S_1 over S_0 and M is S-finite then the quasicoherent \widetilde{M} is of finite type (i.e., locally corresponds to a finitely generated module, so for noetherian S it is coherent), and $\widetilde{M} = 0$ if and only if $M_n = 0$ for all large n.

Proof. Let $f_1, \ldots, f_r \in S_1$ be a finite set of elements generating S over S_0 , so $\operatorname{Proj}(S)$ is covered by the open affines $D_+(f_j)$. If $f \in S_+$ is homogeneous of degree d > 0 then $S_{(f)} \simeq S^{(d)}/(f-1)$ and compatibly $M_{(f)} \simeq M^{(d)}/(f-1)$. Since $M^{(d)}$ is $S^{(d)}$ -finite by (iii), we get the "finite type" assertion by letting f vary through the f_i 's.

Now consider the vanishing assertion. We have M = 0 if and only if each the quasi-coherent $\widetilde{M}|_{D_+(f_j)} = \widetilde{M}_{(f_j)}$ on $\operatorname{Spec}(S_{(f_j)})$ vanishes for each j, which is to say (by quasi-coherence!) $M_{(f_j)} = 0$ for each j. Every degree-0 fraction in $M_{(f_j)}$ can be written with denominator as big a power of f_j as we please, so its homogeneous numerator has degree as large as we want. Thus, if $M_n = 0$ for all big n then every $M_{(f_j)}$ vanishes and so $\widetilde{M} = 0$. (This implication did not use that M is S-finite.)

For the converse, suppose $\widetilde{M} = 0$. We can pick a finite set of homogeneous generators m_1, \ldots, m_n of M, so if $d_j = \deg(m_j)$ (which might be negative!) then $m_j/f_j^{d_j}$ is a degree-0 fraction, so it vanishes in $M_{(f_j)} \subset M_{f_j}$. Hence, for some big N_j we have $f_j^{N_j}m_j = 0$ in M. For $N = \max_j N_j$ we have $f_j^N m_j = 0$ for all j. Since the f_j 's generate S over S_0 , anything in S with sufficiently big degree is an S_0 -linear combination of monomials in the f_j 's at least one of which has exponent $\geq N$. It follows that $S_q m_j = 0$ for q big enough and all finitely many j's, so $S_q M = 0$ for all big q. By Proposition 1.1(ii), this forces $M_n = 0$ for all big n.

2. Proof of Proposition 1.1

First we prove (i). The quotient map $\pi : S(d_1) \oplus \cdots \oplus S(d_r) \twoheadrightarrow M$ is a map of graded modules by design, so it is surjective in each degree. Hence, (i) reduces to the case of S(d) for any $d \in \mathbb{Z}$. This has no terms in degree below -d (since S is **N**-graded), and $S(d)_n = S_{d+n}$, so to prove (i) it remains to check that each S_m is S_0 -finite. As we discussed at the start, Sis a quotient of $S_0[X_1, \ldots, X_N]$ with X_j homogeneous of degree δ_j . Thus, S_m is a quotient of $S_0[X_1, \ldots, X_N]_m$. Since each X_j has *positive* degree, there are only finitely many monomials with any given degree $m \geq 0$, and those clearly span the degree-m part as an S_0 -module. This finishes the proof of (i).

Now turn to (ii). As in the proof of (i), we can reduce to the case M = S(d) for $d \in \mathbb{Z}$. Shifting all degrees by -d is harmless, so we can assume M = S. Say S is generated over S_0 by homogeneous elements f_1, \ldots, f_N with positive degrees $\delta_1, \ldots, \delta_N$. Consider d_0 that is a positive multiple of every δ_j . Then we claim $S_{d_0}S_n = S_{d_0+n}$ for all sufficiently large n > 0. For any m > 0, S_m is the S_0 -linear span of monomials $f_1^{e_1} \cdots f_N^{e_N}$ with degree m. Taking mbig enough forces at least one e_j to be as big as we wish, so in particular $e_j > d_0/\delta_j$ for some j. Hence, we can factor out the term $f_j^{d_0/\delta_j}$ with degree d_0 . This completes the proof of (ii).

To prove (iii), by (i) we can drop all terms with q below whatever bound we wish, which is to say we can replace $\bigoplus_{q \in \mathbb{Z}} M_{dq+r}$ with the direct sum in which q is required to be as large as we wish to specify. Take $q > d_0 + n_0$ with d_0 as in (ii) and n_0 big enough as for n in (ii). Thus, by (ii),

$$M_{dq+r} = M_{d(d_0+n_0)+d(q-(d_0+n_0))+r} = S_{dd_0}M_{dn_0+d(q-(d_0+n_0))+r}$$

This can keep being iterated if $q - (d_0 + n_0) > d_0 + n_0$, so we eventually arrive at an equality

$$M_{dq+r} = S_{dm} M_{dn_0 + de+r}$$

where $0 \le e \le d_0 + n_0$ and $m \in \mathbf{N}$. There are only finitely many possibilities for $dn_0 + de + r$, so by (i) we arrive at a finite $S^{(d)}$ -module generating set for $M^{(d)}$.

Finally, we consider (iv). We first discuss a general fact: for an N-graded ring T to be finitely generated as an algebra over its degree-0 part, it is necessary and sufficient that T_+ is a finitely generated ideal in T. The necessity is obvious (the algebra generators can be taken to be homogeneous of positive degree by decomposing some algebra generating set into finite sums of homogeneous elements, and those elements generate T_+ as an ideal). For sufficiency, we can arrange that the set t_1, \ldots, t_h of generators of T_+ as an ideal consists of homeogeneous elements with *positive* degree, so by degree-chasing with homogeneous elements it is easy to see by degree-induction that the same t_j 's are T_0 -algebra generators of T.

Returning to our situation of interest, by taking T to be $S^{(d)}$ above we see that to show the **N**-graded $S^{(d)}$ is finitely generated over S_0 it is equivalent to showing $(S^{(d)})_+$ is finitely generated as an *ideal* in $S^{(d)}$. But $(S^{(d)})_+ = (S_+)^{(d)}$ (where S_+ is regarded as a graded Smodule), and the original hypothesis that S is finitely generated over S_0 implies (by taking T = S above) that S_+ is a finitely generated ideal in S, which is to say it is a *finitely* generated S-module. We can then apply (iii) with $M = S_+$ and r = 0 to conclude that $(S_+)^{(d)} (= (S^{(d)})_+)$ is a finitely generated $S^{(d)}$ -module, and that exactly says this ideal of $S^{(d)}$ is finitely generated, as desired. Thus, the first assertion in (iv) is proved.

To complete the proof of (iv), it remains to find d > 0 so that $S^{(d)}$ is generated by S_d over S_0 . We can take d to be d_0 as in (ii) for M = S.