
Math 216A. Finiteness aspects of graded modules and algebras

1. Main results

Let S be an N-graded ring finitely generated over S0. Each generator is a finite sum of
homogeneous elements, so we get a finite generating set consisting of homogeneous elements
which we may assume are in positive degree (since anything in degree 0 belong to S0 and
hence is redundant for the purposes of a generating set over S0). In other words, there is a
graded surjection S0[X0, . . . , Xm] � S where Xj is assigned some degree δj > 0. Thus, we
get a closed immersion

Proj(S) ↪→ Proj(S0[X0, . . . , Xm])

into a “weighted projective space” over S0. But is Proj(S) actually projective over S0 (i.e,
a closed subscheme of some Proj(S0[t0, . . . , tq]) where each tj is homogeneous of degree 1)?
One purpose of this handout is to give an affirmative answer.

It will be convenent to express most of our work in terms of graded modules, so let M
be a Z-graded S-module that is finitely generated as an S-module. Any element of M is a
finite sum of homogeneous elements, so M has a finite generating set over S consisting of
homogeneous elements m1, . . . ,mr. If dj = deg(mj) (i.e., mj ∈ Sdj) then we have a graded
S-linear maps S(−dj)→M via s 7→ smj, so a graded S-linear surjection

π :
r⊕
j=1

S(−dj) �M.

Recall that by definition

S(d) =
⊕
q≥0

Sdq, M
(d) =

⊕
q∈Z

Mdq.

In §2 we will prove:

Proposition 1.1. Let S and M be as above.

(i) For sufficiently negative n we have Mn = 0, and for all n the S0-module Mn is finitely
generated (e.g., Sn is S0-finite for all n).

(ii) There exists d0 > 0 depending only on S so that for all n sufficiently large depending
on M , we have Sd0Mn = Mn+d0.

(iii) For all d > 0 and 0 ≤ r ≤ d − 1, the S(d)-module ⊕q∈ZMdq+r is finitely generated.
(Using r = 0, this implies M (d) is S(d)-finite for all d > 0.)

(iv) For all d > 0, the N-graded S0-algebra S(d) is finitely generated. For some large d,
S(d) is generated by Sd over S0 (so likewise for all multiples of d).

The importance of (iv) is that for d big enough and divisible enough we have that the
S0-algebra S(d) = ⊕q≥0Sdq is generated by the S0-finite Sd, so if we redefine the dZ-valued
degree on S(d) by dividing it by d (as we may) then S(d) is finitely generated in degree 1 over
its degree-0 part. Hence, for such d we have a closed immersion Proj(S) ' Proj(S(d)) ↪→ PN

S0

over S0. Thus, Proj(S) is projective over S0!
Here is an important application of parts (ii) and (iii).
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Corollary 1.2. If S is finitely generated by S1 over S0 and M is S-finite then the quasi-

coherent M̃ is of finite type (i.e., locally corresponds to a finitely generated module, so for

noetherian S it is coherent), and M̃ = 0 if and only if Mn = 0 for all large n.

Proof. Let f1, . . . , fr ∈ S1 be a finite set of elements generating S over S0, so Proj(S)
is covered by the open affines D+(fj). If f ∈ S+ is homogeneous of degree d > 0 then
S(f) ' S(d)/(f − 1) and compatibly M(f) ' M (d)/(f − 1). Since M (d) is S(d)-finite by (iii),
we get the “finite type” assertion by letting f vary through the fj’s.

Now consider the vanishing assertion. We have M̃ = 0 if and only if each the quasi-coherent

M̃ |D+(fj) = M̃(fj) on Spec(S(fj)) vanishes for each j, which is to say (by quasi-coherence!)
M(fj) = 0 for each j. Every degree-0 fraction in M(fj) can be written with denominator as
big a power of fj as we please, so its homogeneous numerator has degree as large as we want.

Thus, if Mn = 0 for all big n then every M(fj) vanishes and so M̃ = 0. (This implication did
not use that M is S-finite.)

For the converse, suppose M̃ = 0. We can pick a finite set of homogeneous generators

m1, . . . ,mn of M , so if dj = deg(mj) (which might be negative!) then mj/f
dj
j is a degree-0

fraction, so it vanishes in M(fj) ⊂ Mfj . Hence, for some big Nj we have f
Nj

j mj = 0 in M .

For N = maxj Nj we have fNj mj = 0 for all j. Since the fj’s generate S over S0, anything
in S with sufficiently big degree is an S0-linear combination of monomials in the fj’s at least
one of which has exponent ≥ N . It follows that Sqmj = 0 for q big enough and all finitely
many j’s, so SqM = 0 for all big q. By Proposition 1.1(ii), this forces Mn = 0 for all big
n. �

2. Proof of Proposition 1.1

First we prove (i). The quotient map π : S(d1) ⊕ · · · ⊕ S(dr) � M is a map of graded
modules by design, so it is surjective in each degree. Hence, (i) reduces to the case of S(d) for
any d ∈ Z. This has no terms in degree below −d (since S is N-graded), and S(d)n = Sd+n,
so to prove (i) it remains to check that each Sm is S0-finite. As we discussed at the start, S
is a quotient of S0[X1, . . . , XN ] with Xj homogeneous of degree δj. Thus, Sm is a quotient of
S0[X1, . . . , XN ]m. Since each Xj has positive degree, there are only finitely many monomials
with any given degree m ≥ 0, and those clearly span the degree-m part as an S0-module.
This finishes the proof of (i).

Now turn to (ii). As in the proof of (i), we can reduce to the case M = S(d) for d ∈ Z.
Shifting all degrees by −d is harmless, so we can assume M = S. Say S is generated over
S0 by homogeneous elements f1, . . . , fN with positive degrees δ1, . . . , δN . Consider d0 that is
a positive multiple of every δj. Then we claim Sd0Sn = Sd0+n for all sufficiently large n > 0.
For any m > 0, Sm is the S0-linear span of monomials f e11 · · · f

eN
N with degree m. Taking m

big enough forces at least one ej to be as big as we wish, so in particular ej > d0/δj for some

j. Hence, we can factor out the term f
d0/δj
j with degree d0. This completes the proof of (ii).

To prove (iii), by (i) we can drop all terms with q below whatever bound we wish, which
is to say we can replace ⊕q∈ZMdq+r with the direct sum in which q is required to be as large
as we wish to specify. Take q > d0 + n0 with d0 as in (ii) and n0 big enough as for n in (ii).
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Thus, by (ii),

Mdq+r = Md(d0+n0)+d(q−(d0+n0))+r = Sdd0Mdn0+d(q−(d0+n0))+r.

This can keep being iterated if q− (d0 +n0) > d0 +n0, so we eventually arrive at an equality

Mdq+r = SdmMdn0+de+r

where 0 ≤ e ≤ d0 +n0 and m ∈ N. There are only finitely many possibilities for dn0 +de+r,
so by (i) we arrive at a finite S(d)-module generating set for M (d).

Finally, we consider (iv). We first discuss a general fact: for an N-graded ring T to be
finitely generated as an algebra over its degree-0 part, it is necessary and sufficient that T+ is
a finitely generated ideal in T . The necessity is obvious (the algebra generators can be taken
to be homogeneous of positive degree by decomposing some algebra generating set into finite
sums of homogeneous elements, and those elements generate T+ as an ideal). For sufficiency,
we can arrange that the set t1, . . . , th of generators of T+ as an ideal consists of homeogeneous
elements with positive degree, so by degree-chasing with homogeneous elements it is easy to
see by degree-induction that the same tj’s are T0-algebra generators of T .

Returning to our situation of interest, by taking T to be S(d) above we see that to show
the N-graded S(d) is finitely generated over S0 it is equivalent to showing (S(d))+ is finitely
generated as an ideal in S(d). But (S(d))+ = (S+)(d) (where S+ is regarded as a graded S-
module), and the original hypothesis that S is finitely generated over S0 implies (by taking
T = S above) that S+ is a finitely generated ideal in S, which is to say it is a finitely
generated S-module. We can then apply (iii) with M = S+ and r = 0 to conclude that
(S+)(d) (= (S(d))+) is a finitely generated S(d)-module, and that exactly says this ideal of
S(d) is finitely generated, as desired. Thus, the first assertion in (iv) is proved.

To complete the proof of (iv), it remains to find d > 0 so that S(d) is generated by Sd over
S0. We can take d to be d0 as in (ii) for M = S.


