
Math 216A. Codimension

1. Main result and some interesting examples

Let k be a field, and A a domain finitely generated k-algebra. The dimension theory of A is
linked to the structure of its fraction field Q(A) in the sense that dimA = trdegk(Q(A)). In
particular, all strictly increasing chains of irreducible closed subsets of Spec(A) have length
bounded by 1 + trdegk(Q(A)), with some such chain achieving this maximal length. To
make a sufficiently robust geometric theory of dimension, we need the following result (to
be proved in the next section).

Theorem 1.1. Let Z = Spec(A) for a domain A finitely generated over a field k. For every
maximal chain of irreducible closed sets

Z0 ( Z1 ( · · · ( Zn = Z

(so Z0 is a point, by maximality), necessarily n = dimZ.

In this theorem, “maximal” means (since Z0 is a point and Z is irreducible) that the chain
cannot be made longer by inserting an irreducible closed set strictly between some Zi and
Zi+1. Since dimZ0 = 0 and dimZi+1 > dimZi for all i (as for any strict inclusion between
irreducible closed subsets of Z), we have

dimZi =
∑
1≤j≤i

(dimZj − dimZj−1)

with each of the i differences an integer ≥ 1. But for i = n we have dimZn = dimZ = n, so
each of the differences dimZj − dimZj−1 must be exactly 1 and hence dimZi = i for all i.

In other words, for a maximal chain of irreducible closed sets every jump involves an
increase of exactly 1 in the dimension. For example, in a 3-dimensional Z any maximal
chain of irreducible closed subsets must be a closed point in an irreducible closed “curve” in
an irreducible closed “surface” in Z. This has the following important corollary.

Corollary 1.2. Let A′ be a domain finitely generated over k with dimension d′ and let
Z ′ = Spec(A′). If Z = V (P ) = Spec(A′/P ) ⊆ Z ′ is an irreducible closed subset of dimension
d ≤ d′ then every maximal chain of irreducible closed sets beginning at Z and ending at Z ′

has the form
Z = Zd ( · · · ( Zd′ = Z ′

with dimZi = i for every d ≤ i ≤ d′.

Proof. By maximality of such a chain, if we append on the left a maximal chain contained
in Z then we get a maximal chain in Z ′, so by the Theorem applied to Z ′ this new chain
(which begins at a point) must have 1 + dimZ ′ terms and dimZi = i for all i. �

In view of this corollary, we have a good notion of codimension in the irreducible case:

Definition 1.3. Let Z ′ = Spec(A′) for a domain A′ finitely generated over a field k. For an
irreducible closed subset Z ⊆ Z ′, the codimension c = codimZ′(Z) of Z in Z ′ is the unique
integer c such that every maximal chain of irreducible closed sets beginning at Z and ending
at Z ′ has c+ 1 terms. Equivalently, c = dimZ ′ − dimZ.
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There is a reasonable definition of codimension without irreducibility hypotheses (i.e.,
allowing Z or Z ′ to be reducible), but it is not as geometrically significant as in the irreducible
case, so we won’t discuss it.

We end this introductory section with some instructive examples over an algebraically
closed field k, working with MaxSpec instead of Spec for more direct contact with “geometric
intuition” (though in such cases there is no difference between working with Spec or MaxSpec
for questions about chains of irreducible closed subsets).

Inspired by linear algebra, it is natural to wonder if we can define codimension c =
codimZ′(Z) in terms of “minimal number of equations needed to cut out Z inside Z ′”. This
can be interpreted in two reasonable ways. Since k[Z] = k[Z ′]/J for a radical ideal J , we
can consider the minimal number of generators of the ideal J or the minimal number of
generators of some ideal I ⊂ k[Z ′] such that rad(I) = J . This latter condition is a weaker
requirement (as we do not specify which I to use), but even for this it turns out that working
with the number of equations does not give the right notion in general.

The problem is that we are working too globally. It turns out that in a suitable “local”
sense (in the Zariski topology) one can always find a set of c “local equations” that define Z
as a subset of Z ′ near an arbitrary chosen point z ∈ Z, but the proof rests on much deeper
work in the dimension theory of local noetherian rings. For cutting out the entirety of Z in
Z ′, there are counterexamples if we try to use only c global equations. We now describe such
a counterexample, but we omit the justification (which require techniques in commutative
algebra beyond the level of this course). This counterexample (due to Hartshorne) works in
any characteristic, and involves a surface in 4-space. Roughly speaking, we consider a surface
S obtained from the plane by identifying the points (0, 0) and (0, 1). More rigorously:

Example 1.4. Consider the k-subalgebra

A = {f ∈ k[t, u] | f(0, 0) = f(0, 1)} ⊂ k[t, u].

(The equation defining A corresponds to the geometric idea of identifying the points (0, 0)
and (0, 1).) I claim that A is the k-subalgebra generated by 4 elements:

t, tu, u(u− 1) = u2 − u, u2(u− 1) = u3 − u2.
Geometrically, this means that A is the coordinate ring of a closed set in affine 4-space.

Clearly the 4 indicated elements of k[t, u] lie in A. To prove that they generate A as a
k-algebra, consider an arbitrary element f ∈ A. Since any n > 1 has the form 2a+ 3b with
integers a, b ≥ 0, we can use the elements u2 − u and u3 − u2 in our list to write f in the
form

f = h(t, u2 − u, u3 − u2) + ug(t)

for some h ∈ k[x, y, z]. Likewise, ug(t) = cu + tuG(t) for some c ∈ k and G ∈ k[t]. Hence,
we have expressed f as an element of k[t, tu, u(u − 1), u2(u − 1)] up to adding an element
of the form cu. But cu ∈ A precisely when f ∈ A (as t, tu, u(u − 1), u2(u − 1) ∈ A), and
cu ∈ A if and only if c = 0, so f ∈ A if and only if c = 0. Thus, the asserted list of k-algebra
generators of A really does work.

To summarize, we see that there is a surjective map π : k[x, y, z, w] � A via

x 7→ t, y 7→ u(u− 1), z 7→ tu, w 7→ u2(u− 1).
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The kernel P := ker π is a prime ideal (since the quotient A is a domain), and clearly

(1) xw − yz, x2y − z(z − x), y3 − w(w − y) ∈ P.
In more geometric terms with k = k, since the defining inclusion A ↪→ k[t, u] is injective, we
see that the polynomial map f : k2 → k4 defined by

f : (t, u) 7→ (t, u(u− 1), tu, u2(u− 1))

has image contained in Z(P ) and dense in Z(P ) (since k[x, y, z, w]/P = A ↪→ k[t, u] is
injective). Since the injective map k[x, y, z, w]/P = A→ k[t, u] is module-finite (e.g., t ∈ A
and u2−u ∈ A), the geometric map k2 → Z(P ) is finite surjective, so dimZ(P ) = dim k2 = 2.
Thus, Z := Z(P ) is an irreducible surface in k4; it has codimension 2.

For k = k, the elements in (1) vanish on Z, and they do cut out Z set-theoretically; i.e.,
their common zero locus in k4 is Z = f(k2). Indeed, consider a point (x0, y0, z0, w0) that
satisfies all three relations

x0w0 = y0z0, x
2
0y0 = z0(z0 − x0), y30 = w0(w0 − y0).

We seek (t0, u0) ∈ k2 such that

(x0, y0, z0, w0) = (t0, u0(u0 − 1), t0u0, u
2
0(u0 − 1)).

The “easy” case is when x0 6= 0, in which case we define u0 = z0/x0 and t0 = x0; this works
since

u0(u0 − 1) = z0(z0 − x0)/x20 = x20y0/x
2
0 = y0, u

2
0(u0 − 1) = u0y0 = z0y0/x0 = w0.

Suppose instead that x0 = 0, so clearly z0 = 0 and our point is (0, y0, 0, w0) with y30 =
w0(y0 − w0). If y0 = 0 then w0 = 0 and so we can take t0 = u0 = 0. If y0 6= 0 then we can
take t0 = 0 and u0 = w0/y0. This completes the proof that Z is the common zero locus of
the elements in (1). (Note that we have not addressed whether or not these three elements
of P in fact generate P . This is not necessary to know.)

To prove that Z cannot be the set of common zeros of a pair of polynomials in k[x, y, z, w],
one has to use deeper techniques from commutative algebra (related to completions and
connectedness properties of Cohen-Macaulay rings). This is explained in Example 3.4.2 of
Hartshorne’s paper “Complete intersections and connectedness”.

2. Proof of Theorem 1.1

We shall prove that if Z = Spec(A) for a domain A finitely generated over a field k then
all maximal chains of irreducible closed subsets of Z have length 1 + dimZ. We argue by
induction on dimZ. If dimZ = 0 then Z is a point and the result is clear. Thus, we may
assume that the common value dimZ = trdegk(Q(A)) is positive. Since any maximal chain
of irreducible closed subsets in Z ends with a chain V = Spec(A/P ) ( Z where V is maximal
among irreducible proper closed subsets of Z (i.e., P is a minimal nonzero prime), our task
is equivalent to showing that if V ( Z is a maximal irreducible proper closed subset of Z

then dim(V )
?
= dim(Z) − 1, as then we can apply dimension induction to conclude. It is

equivalent to show that trdegk(Q(A/P )) = trdegk(Q(A))− 1.
We first treat the special case Z = Spec(k[x1, . . . , xd]) with d > 0, and then we will use

this case to handle the general case via the Noether normalization theorem. For such Z
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we claim that the maximal proper irreducible closed subsets are precisely the irreducible
hypersurfaces V (f) for an irreducible f ∈ k[x1, . . . , xd]. Indeed, if P is any nonzero prime
ideal of this polynomial ring then it contains a nonzero polynomial and thus (by primality)
contains one of its irreducible factors f . That is, P contains (f), so the prime ideals (f)
for irreducible f ∈ k[x1, . . . , xd] are precisely the minimal nonzero primes of this polynomial
ring. This yields the asserted description of the maximal irreducible proper closed subsets
of Spec(k[x1, . . . , xd]). Our task in this special case is to show that dim(V (f)) = d− 1.

By relabeling variables we can assume that f involves xd, so

f = an(x1, . . . , xd−1)x
n
d + · · · ∈ k[x1, . . . , xd−1][xd]

with n > 0, the omitted terms of lower degree in xd, and an ∈ k[x1, . . . , xd−1] nonzero. Since
f is irreducible and involves xn, it is easy to see (check!) that f does not divide any nonzero
element of k[x1, . . . , xd−1]. Thus, the natural map

k[x1, . . . , xd−1]→ k[x1, . . . , xd]/(f)

between domains is injective, yet the induced map of fraction fields

k(x1, . . . , xd−1)→ Frac(k[x1, . . . , xd]/(f))

is finite algebraic since the element xd ∈ k[x1, . . . , xd]/(f) satisfies the positive-degree al-
gebraic relation over k(x1, . . . , xd−1) given by the condition f = 0. Thus, by additivity of
transcendence degree in towers of finitely generated field extensions,

dim(V (f)) = trdegk(Frac(k[x1, . . . , xd]/(f))) = trdegk(k(x1, . . . , xd−1)) = d− 1,

as desired.
Now we consider the general case with d = dim(Z) > 0. By Noether normalization there

is a finite injective map k[x1, . . . , xd] ↪→ A, hence the corresponding map

f : Z = Spec(A)→ Spec(k[x1, . . . , xd])

has dense image (as ker(f) = 0) which is closed (due to the module-finiteness of the ring
map) and thus full. That is, f is surjective and closed. The closed image V ′ = f(V ) ⊆
Spec(k[x1, . . . , xd]) is an irreducible closed subset and V → V ′ corresponds to a module-finite
injection between the associated domains (as respective quotients of A and k[x1, . . . , xd]).
Thus, the resulting equality of transcendence degrees over k for their fraction fields yields that
dimV ′ = dimV < dimZ = d, so V ′ 6= k[x1, . . . , xd]. It suffices to show that dim(V ′) = d−1,
so in view of the special case just treated above it suffices to show that V ′ is maximal as an
irreducible proper closed subset of k[x1, . . . , xd]. Recall that V is maximal as an irreducible
proper closed subset of Z, by hypothesis. It therefore suffices to apply the following general
result to the module-finite injection k[x1, . . . , xd] ↪→ A:

Proposition 2.1 (weak going-down theorem). Let B → C be a module-finite injection
between domains with B integrally closed. If P is minimal as a nonzero prime ideal of C
then P ∩B is minimal as a nonzero prime ideal of B.

Proof. By integrality of this ring extension, and the resulting incomparability of distinct
primes of C over a common prime of B, any nonzero prime of C must lie over a nonzero prime
of B. (This can also be seen directly by considering constant terms of suitable “minimal”
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polynomials.) Thus, P ∩B 6= 0. If there were a nonzero prime p strictly contained in P ∩B
then by the going-down theorem (which applies since B is integrally closed!) there would
be a prime ideal P ′ ⊂ P in B lying over p. Thus, P ′ 6= 0 and P ′ 6= P , contradicting the
minimality hypothesis on P . �

Remark 2.2. The idea behind the preceding proof can be expressed in another way in the
classical setting (working over an algebraically closed field k and with MaxSpec, for simplic-
ity) which illuminates the role of integral closedness. Rather than showing that a maximal
proper irreducible closed set V ⊂ Z maps onto a maximal proper irreducible closed set
V ′ ⊂ Z ′ (with Z and Z ′ irreducible affine algebraic sets over k), we can just as well try to
show that if V ′ ( W ′ ⊂ Z ′ is a strict containment between general irreducible closed sets in
Z ′ and if V is an irreducible closed set of Z that lies over V ′ in the sense that it maps onto
V ′ then is V contained in an irreducible closed set W that maps onto W ′ (so V ( W ⊆ Z
if W ′ lies strictly between V ′ and Z ′)? This formulation of the problem turns out to be
false when k[Z ′] is not integrally closed. We now give a counterexample, taking k = k for
simplicity of exposition.

Consider f : k2 → k3 defined by (x, y) 7→ (x(x − 1), x2(x − 1), y). The image consists of
(u, v, y) ∈ k3 for which v2 − uv − u3 = 0 (as we see by setting x = v/u when u 6= 0), so for

Z ′ := {(u, v, y) ∈ k3 | v2 − uv − u3 = 0}
it is easy to check that Z ′ is an irreducible surface and f : k2 → Z ′ is a finite map (since
x2 − x and y lie in the coordinate ring k[Z ′] ⊂ k[x, y]). In fact, the module-finite inclusion
k[Z ′] ↪→ k[x, y] induces an equality of fraction fields since y ∈ k[Z ′] and x = v/u with
u, v ∈ k[Z ′], so k[x, y] is the integral closure of k[Z ′] in its fraction field and it is strictly
larger (e.g., x 6∈ k[Z ′]). That is, k[Z ′] is not integrally closed.

Geometrically, f carries both lines L0 = {x = 0} and L1 = {x = 1} onto the y-axis
L = {u = v = 0} ⊂ Z ′ in k3, with f−1(L) = L0 ∪ L1. Away from L the restricted
map k2 − (L0 ∪ L1) → Z ′ − L is an isomorphism between these basic affine open sets (i.e.,
the associated map of coordinate rings k[x, y]x(x−1) → k[Z ′]x−y is an isomorphism), so we
visualize Z ′ as the result of making the plane k2 pass through itself along a single line L.

Consider the diagonal line ∆ = {x = y} in k2 which meets L0 = {x = 0} in (0, 0) and
meets L1 = {x = 1} in (1, 1). The image C ′ = f(∆) ⊂ Z ′ is an irreducible closed set in
Z ′ of dimension 1 that meets the common image L of L0 and L1 in the points P = (0, 0, 0)
and Q = (0, 0, 1). Visually, C ′ is a curve in Z ′ that “wraps around” the surface Z ′, passing
through the line of singularities L at the points P and Q. In particular, the preimage
f−1(C ′) = ∆ ∪ {(1, 0)} ∪ {(0, 1)} is a disjoint union of the diagonal ∆ and two isolated
points (1, 0) and (0, 1). Thus, if we consider the irreducible closed set V ′ = {P} in C ′ and
choose the irreducible closed set V = {(1, 0)} over V ′ then there is no irreducible closed set
C in Z = k2 that contains V ′ and maps onto the irreducible closed set C ′ that contains V ′.
Indeed, since C ′ is irreducible of dimension 1 then any such C would have to be irreducible
of dimension 1 and yet lie in f−1(C ′) which is a disjoint union of ∆ and two isolated points.
That is, the only possibility for C is ∆, yet this does not contain V = {(1, 0)}!


