
Math 210C. Representations of sl2

1. Introduction

In this handout, we work out the finite-dimensional k-linear representation theory of sl2(k)
for any field k of characteristic 0. (There are also infinite-dimensional irreducible k-linear
representations, but here we focus on the finite-dimensional case.) This is an introduction
to ideas that are relevant in the general classification of finite-dimensional representations
of “semisimple” Lie algebras over fields of characteristic 0, and is a crucial technical tool
for our later work on the structure of general connected compact Lie groups (especially to
explain the ubiquitous role of SU(2) in the general structure theory).

When k is fixed during a discussion, we write sl2 to denote the Lie algebra sl2(k) of traceless
2×2 matrices over k (equipped with its usual Lie algebra structure via the commutator inside
the associative k-algebra Mat2(k)). Recall the standard k-basis {X−, H,X+} of sl2 given by

X− =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, X+ =

(
0 1
0 0

)
,

satisfying the commutation relations

[H,X±] = ±2X±, [X+, X−] = H.

For an sl2-module V over k (i.e., k-vector space V equipped with a map of Lie algebras
sl2 → Endk(V )), we say it is irreducible if V 6= 0 and there is no nonzero proper sl2-
submodule. We say that V is absolutely irreducible (over k) if for any extension field K/k
the scalar extension VK is irreducible as a K-linear representation of the Lie algebra sl2(K) =
K ⊗k sl2 over K.

If V is a finite-dimensional representation of a Lie algebra g over k then we define the
dual representation to be the dual space V ∗ equipped with the g-module structure X.` =
`◦(−X.v) = −`(X.v) for ` ∈ V ∗. (The reason for the minus sign is to ensure that the action of
[X, Y ] on V ∗ satisfies [X, Y ](`) = X.(Y.`)−Y.(X.`) rather than [X, Y ](`) = Y.(X.`)−X.(Y.`).
The intervention of negation here is similar to the fact that dual represenations of groups
G involve evaluation against the action through inversion, to ensure the dual of a left G-
action is a left G-action rather than a right G-action.) The natural k-linear isomorphism
V ' V ∗∗ is easily checked to be g-linear. It is also straightforward to check (do it!) that if
ρ : G → GL(V ) is a smooth representation of a Lie group G on a finite-dimensional vector
space over R or C then Lie(ρ∗) = Lie(ρ)∗ as representations of Lie(G) (where V ∗ is initially
made into a G-representation in the usual way). The same holds if G is a complex Lie group
(acting linearly on finite-dimensional C-vector space via a holomorphic ρ, using the C-linear
identification of Lie(GL(V )) = EndC(V ) for GL(V ) as a complex Lie group).

In the same spirit, the tensor product of two g-modules V and V ′ has underlying k-vector
space V ⊗k V

′ and g-action given by

X.(v ⊗ v′) = (X.v)⊗ v′ + v ⊗ (X.v′)

forX ∈ g and v ∈ V , v′ ∈ V ′. It is easy to check (do it!) that this tensor product construction
is compatible via the Lie functor with tensor products of finite-dimensional representations
of Lie groups in the same sense as formulated above for dual representations.
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2. Primitive vectors

To get started, we prove a basic fact:

Lemma 2.1. Let V be a nonzero finite-dimensional sl2-module over k. The operators X±

on V are nilpotent and the H-action on V carries each ker(X±) into itself.

Proof. Since [H,X±] = ±2X±, the Lie algebra representation conditions give the identity

H.(X±.v) = [H,X±].v +X±.(H.v) = ±2X±.v +X±.(H.v)

for any v ∈ V . Thus, if X±v = 0 then X±.(H.v) = 0, so H.v ∈ kerX±. This gives the
H-stability of each kerX±.

We now show that X± is nilpotent. More generally, if E and H are linear endomorphisms
of a finite-dimensional vector space V in characteristic 0 and the usual commutator [E,H] of
endomorphisms is equal to cE for some nonzero c then we claim that E must act nilpotently
on V . By replacing H with (1/c)H if necessary, we may assume [E,H] = E. Since EH =
HE + E = (H + 1)E, we have

E2H = E(H + 1)E = (EH + E)E = ((H + 1)E + E)E = (H + 2)E2,

and in general EnH = (H + n)En for integers n ≥ 0. Taking the trace of both sides, the
invariance of trace under swapping the order of multiplication of two endomorphisms yields

Tr(EnH) = Tr((H + n).En) = Tr(En.(H + n)) = Tr(EnH) + nTr(En),

so nTr(En) = 0 for all n > 0. Since we’re in characteristic 0, we have Tr(En) = 0 for all
n > 0.

There are now two ways to proceed. First, we can use “Newton’s identities”, which
reconstruct the symmetric functions of a collection of d elements λ1, . . . , λd (with multiplicity)
in a field of characteristic 0 (or any commutative Q-algebra whatsoever) from their first d
power sums

∑
j λ

n
j (1 ≤ n ≤ d). The formula involves division by positive integers, so

the characteristic 0 hypothesis is essential (and the assertion is clearly false without that
condition). In particular, if the first d power sums vanish then all λj vanish. Applying this

to the eigenvalues of E over k, it follows that the eigenvalues all vanish, so E is nilpotent.
However, the only proofs of Newton’s identities that I’ve seen are a bit unpleasant (perhaps
one of you can enlighten me as to a slick proof?), so we’ll instead use a coarser identity that
is easy to prove.

In characteristic 0 there is a general identity (used very creatively by Weil in his original
paper on the Weil conjectures) that reconstructs the “reciprocal root” variant of character-
istic polynomial of any endomorphism E from the traces of its powers: since the polynomial
det(1− tE) in k[t] has constant term 1 and log(1− tE) = −

∑
n≥1(tE)n/n ∈ tMatd(k[[t]]), it

makes sense to compute the trace Tr(log(1− tE)) ∈ tk[[t]] and we claim that

det(1− tE) = exp(log(det(1− tA)) = exp(Tr(log(1− tA)))

= exp(Tr(−
∑
n≥1

tnEn/n))

= exp(−
∑
n≥1

tnTr(En)/n)
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as formal power series in k[[t]]. (Note that it makes sense to plug an element of tk[[t]] into
any formal power series in one variable!) Once this identity proved for general E, it follows
that if Tr(En) vanishes for all n > 0 then det(1− tE) = exp(0) = 1. But the coefficients of
the positive powers of t in det(1 − tE) are the lower-order coefficients of the characteristic
polynomial of E, whence this characteristic polynomial is td, so E is indeed nilpotent, as
desired.

In the above string of equalities, the only step which requires explanation is the equality

log(det(1− tE)) = Tr(log(1− tE))

in k[[t]]. To verify this identity we may extend scalars so that k is algebraically closed,
and then make a change of basis on kd so that E is upper-triangular, say with entries
λ1, . . . , λd ∈ k down the diagonal. Thus, det(1 − tE) =

∏
(1 − λjt) and log(1 − tE) =

−
∑

n≥1 t
nEn/n is upper-triangular, so its trace only depends on the diagonal, whose entries

are log(1 − λjt) ∈ tk[[t]]. Summarizing, our problem reduces to the formal power series
identity that log applied to a finite product of elements in 1 + tk[[t]] is equal to the sum
of the logarithms of the terms in the product. By continuity considerations in complete
local noetherian rings (think about it!), the rigorous justification of this identity reduces to
the equality log(

∏
(1 + xj)) =

∑
log(1 + xj) in Q[[x1, . . . , xd]], which is easily verified by

computing coefficients of multivariable Taylor expansions. �

In view of the preceding lemma, if V is any nonzero finite-dimensional sl2-module over k
we may find nonzero elements v0 ∈ kerX+, and moreover if k is algebraically closed then
we can find such v0 that are eigenvectors for the restriction of H to an endomorphism of
kerX+.

Definition 2.2. A primitive vector in V is an H-eigenvector in kerX+.

We shall see that in the finite-dimensional case, the H-eigenvalue on a primitive vector
is necessarily a non-negative integer. (For infinite-dimensional irreducible sl2-modules one
can make examples in which there are primitive vectors but their H-eigenvalue is not an
integer.) We call the H-eigenvalue on a primitive eigenvector (or on any H-eigenvector at
all) its H-weight.

3. Structure of sl2-modules

Here is the main result, from which everything else will follow.

Theorem 3.1. Let V 6= 0 be a finite-dimensional sl2-module over a field k with char(k) = 0.

(1) The H-weight of any primitive vector is a non-negative integer.
(2) Let v0 ∈ V be a primitive vector, its weight an integer m ≥ 0. The sl2-submodule

V ′ := sl2 .v0 of V generated by v0 is absolutely irreducible over k and has dimension
m+ 1. Moreover, if we define

vj =
1

j!
(X−)j(v0)

for 0 ≤ j ≤ m (and define v−1 = 0, vm+1 = 0) then

H.vj = (m− 2j).vj, X
+.vj = (m− j + 1)vj−1, X

−.vj = (j + 1)vj+1



4

for 0 ≤ j ≤ m. In particular, the H-action on V ′ is diagonalizable with eigenspaces
of dimension 1 having as eigenvalues the m+1 integers {m,m−2, . . . ,−m+2,−m}.

(3) X+|V ′ has kernel equal to kv0, and this line exhibits the unique highest H-weight.

In particular, if V is irreducible then V = V ′ is absolutely irreducible and is determined up
to isomorphism by its dimension m + 1, and all H-eigenvalues on V ′ are integers, with the
unique highest weight m having a 1-dimenional eigenspace.

Before proving the theorem, we make some remarks.

Remark 3.2. In class we saw the visualization of the effect of X± on the H-eigenlines, as
“raising/lowering” operators with respect to the H-eigenvalues (hence the notation X+ and
X−, the asymmetry between which is due to our convention to work with H = [X+, X−]
rather than −H = [X−, X+] at the outset).

The conceptual reason that we divide by factorials in the definition of the vj’s is to en-
sure that the formulas relating X±.vj to vj∓1 involve integer coefficients with the evident
monotonicity behavior as we vary j. In view of the fact that we’ll later construct such an
irreducible (m + 1)-dimensional representation as the mth symmetric power of the dual of
the standard 2-dimensional representation of sl2, what is really going on with the factorial
division is that the formation of symmetric powers of finite-dimensional vector spaces does
not naturally commute with the formation of dual spaces (in contrast with tensor powers and
exterior powers): in positive characteristic it fails badly, and in general the symmetric power
of a finite-dimensional dual vector space is identified with the dual of a “symmetric divided
power” space (and divided powers are identified with symmetric powers in characteristic 0
via suitable factorial divisions); read the Wikipedia page on divided power structure.

Remark 3.3. The final part of Theorem 3.1, characterizing an irreducible sl2-module up to iso-
morphism by its highest weight, has a generalization to all “semisimple” finite-dimensional
Lie algebras over algebraically closed fields of characteristic 0, called the Theorem of the
Highest Weight. The precise statement of this result requires refined knowledge of the struc-
ture theory of semisimple Lie algebras (such as results and definitions concerning Cartan
subalgebras), so we do not address it here.

In addition to the consequence that any irreducible sl2-module of finite dimension over k
is absolutely irreducible and determined up to isomorphism by its dimension (so it is isomor-
phic to its dual representation!), there is the separate problem of showing that all possible
dimensions really occur. That is, one has to make an actual construction of an irreducible
sl2-module of every positive dimension. Likewise, the precise statement of the Theorem of
the Highest Weight for general semisimple finite-dimensional Lie algebras includes an exis-
tence aspect, and is very much tied up with a good knowledge of the theory of root systems
(a theory that plays an essential role in our later work on the structure theory of connected
compact Lie groups).

We will address the existence issue below for sl2, and also show that the entire finite-
dimensional representation theory of sl2 is completely reducible – i.e., every such representa-
tion is a direct sum of irreducibles – a fact that we can see over k = C via using the analytic
technique of Weyl’s unitarian trick to pass to an analogue for the connected compact Lie
group SU(2). The proof of such complete reducibility over a general field of characteristic
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0 (especially not algebraically closed) requires a purely algebraic argument. In particular,
this will give a purely algebraic proof of the semisimplicity of the finite-dimensional C-linear
representation theory of sl2(C) without requiring the unitarian trick (even though histori-
cally the unitarian trick was a milestone in the initial development of the understanding of
the representation theory of finite-dimensional semisimple Lie algebras over C).

Now we finally prove Theorem 3.1.

Proof. In view of the precise statement of the theorem, it is sufficient to prove the result
after a ground field extension (check: for this it is essential that we are claiming that certain
eigenvalues are integers, not random elements of k). Thus, now we may and do assume k is
algebraically closed, so we can make eigenvalues. Consider any λ ∈ k and v ∈ V satisfying
H.v = λv. (We are mainly interested in the case v 6= 0, but let’s not assume that just yet).
The condition of V being an sl2-module yields the computation

H.(X±.v) = [H,X±].v +X±.H.v = ±2X±.v + λX±.v = (λ± 2)X±.v

that we saw earlier. In particular, if v is a λ-eigenvector for H then X±.v is an eigenvector
for H with eigenvalue λ ± 2j provided that X±.v 6= 0. In particular, the elements in
the sequence {(X±)j.v}j≥0 that are nonzero are mutually linearly independent since they
are H-eigenvectors with pairwise distinct eigenvalues λ ± 2j. (Here we use that we’re in
characteristic 0!)

Let v0 be a primitive vector, which exists by Lemma 2.1 since k is algebraically closed.
Thus, H.v0 = λv0 for some λ ∈ k. Define vj = (1/j!)(X−)j.v0 for all j ≥ 0, and define
v−1 = 0. Since X− is nilpotent on V , we have vj = 0 for sufficiently large j > 0, so the set
of j such that vj 6= 0 is a sequence of consecutive integers {0, 1, . . . ,m} for some m ≥ 0.
Clearly from the definition we have

H.vj = (λ− 2j)vj, X
−.vj = (j + 1)vj+1

for j ≥ 0. We claim that X+.vj = (λ− j + 1)vj−1 for all j ≥ 0. This is clear for j = 0, and
in general we proceed by induction on j. Assuming j > 0 and that the result is known for
j − 1 ≥ 0, we have

X+.vj = (1/j)X+.X−.vj−1 = (1/j)([X+, X−] +X−.X+).vj−1 = (λ− j + 1)vj−1,

where the final equality is a computation using the inductive hypothesis that we leave to the
reader to check.

We know that v0, . . . , vm are linearly independent. Since

(λ−m)vm = X+.vm+1 = 0,

necessarily λ = m. This proves that the primitive vector v0 has H-weight equal to the
non-negative integer m, and from our formulas for the effect of H and X± on each vj
(0 ≤ j ≤ m), clearly the (m + 1)-dimensional k-linear span V ′ of v0, . . . , vm coincides with
the sl2-submodule of V generated by v0. The formulas show that X+|V ′ has kernel equal to
the line spanned by v0.

It remains to show that V ′ is irreducible as an sl2-module. (By extending to an even
larger algebraically closed extension if necessary and applying the same conclusion over that
field, the absolute irreducibility would follow.) Consider a nonzero sl2-submodule W of V ′.
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Since the H-action on V is diagonalizable with 1-dimensional eigenspaces, the H-stable W
must be a span of some of these eigenlines. But the explicit formulas for the effect of X± as
“raising/lowering” operators on the lines kvj makes it clear that a single such line generates
the entirety of V ′ as an sl2-module. Hence, V ′ is irreducible. �

4. Complete reduciblity and existence theorem

We finish by discussing two refinements: the proof that every finite-dimensional sl2-module
is a direct sum of irreducibles, and the existence of irreducible representations of each positive
dimension. As a consequence, for k = C we’ll recover the connection between irreducible
finite-dimensional SO(3)-representations over C and spherical harmonics. First we prove the
existence result.

Proposition 4.1. Let V1 be the standard 2-dimensional representation of sl2 ⊂ Endk(k2).
For m ≥ 0, the symmetric power Vm = Symm(V ∗1 ) of dimension m + 1 is irreducible as an
sl2-module for every m ≥ 1.

Proof. Obviously V0 = k is the 1-dimensional trivial representation, so we may focus on cases
with m ≥ 1. In an evident manner, Vm is the space of homogenous polynomials of degree m
in two variables z1, z2. By inspection, v0 := zm1 is a primitive vector, and the associated vj’s
are given by

vj =

(
m+ 1

j

)
zm−j1 zj2

for 0 ≤ j ≤ m. These span the entire (m+ 1)-dimensional space Vm, so Vm is irreducible by
Theorem 3.1. �

In the general theory of semisimple Lie algebras, there is a construction called the Killing
form (named after Wilhelm Killing even though it was introduced by Cartan, much as Cartan
matrices were introduced by Killing. . . ). This underlies the conceptual technique by which
complete reducibility of representations is proved. In our situation we will use our explicit
knowledge of the list of irreducibles to prove the complete reducibility; such a technique is
certainly ill-advised in a broader setting (beyond sl2):

Theorem 4.2. Every nonzero finite-dimensional sl2-module over k is a direct sum of irre-
ducibles.

Proof. We proceed by induction on the dimension, the case of dimension 1 being clear.
Consider a general V , so if it is irreducible then there is nothing to do. Hence, we may
assume it contains a nonzero proper sl2-submodule, so there is a short exact sequence

0→ V ′ → V → V ′′ → 0

of sl2-modules, with V ′ and V ′′ nonzero of strictly smaller dimension than V . Hence, V ′

and V ′′ are each a direct sum of irreducibles. We just want to split this exact sequence of
sl2-modules.

As we noted in class, for any Lie algebra g over k, the category of g-modules over k is the
same as the category of left U(g)-modules where U(g) is the associative universal enveloping
algebra over k. This is the quotient of the tensor algebra ⊕n≥0g

⊗n modulo the 2-sided ideal
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generated by relations X ⊗ Y − Y ⊗ X = [X, Y ] for X, Y ∈ g. (The Poincaré–Birkhoff–
Witt theorem describes a basis of U(g), but we don’t need that.) Short exact sequences of
g-modules are the same as those of left U(g)-modules. Letting R = U(sl2), the short exact
sequence of interest is an element of Ext1R(V ′′, V ′). We want this Ext-group to vanish.

In an evident manner, since V ′′ is finite-dimensional over k, we see that for any left R-
module W (even infinite-dimensional), HomR(V ′′,W ) ' HomR(k, V ′′∗⊗kW ). By a universal
δ-functor argument (or more hands-on arguments that we leave to the interested reader),

Ext•R(V ′′, ·) = Ext•R(k, V ′′
∗ ⊗k (·)).

(Recall our discussion at the outset of this handout concerning duals and tensor products
of representations of Lie algebras.) Thus, to prove the vanishing of the left side in degree
1 when evaluated on a finite-dimensional argument, it suffices to prove the vanishing of the
right side in such cases. In other words, we are reduced to proving Ext1R(k,W ) = 0 for all
finite-dimensional left sl2-modules W . By using short exact sequences in W , we filter down
to the case when W is irreducible. Thus, we’re reduced to proving the splitting in the special
case when V ′′ = k is the trivial representation and V ′ is irreducible.

Dualizing is harmless, so we want to split short exact sequences

0→ k → E → Vm → 0

for m ≥ 0. The key trick, inspired by knowledge later in the theory (the structure of the
center of the universal enveloping algebra of a semisimple Lie algebra), is to consider the
element

C := H2 + 2(X+X− +X−X+) = H2 + 2H + 4X−X+ ∈ R = U(sl2).

The advanced knowledge that inspires the focus on C is that C/8 is a distinguished element
in the center of U(sl2) (with an analogue in the center of U(g) for any finite-dimensional
semisimple Lie algebra g over k), called the Casimir element. By centrality it must act as
a constant on every absolutely irreducible finite-dimensional representation, due to Schur’s
Lemma. For sl2 one can verify by direct computation (do it!) that C acts as m(m + 2) on
Vm (be careful about computations with the “boundary” vectors v0 and vm in the (m + 1)-
dimensional Vm), so it “picks out” isotypic parts in a direct sum of irreducibles. The centrality
of C in U(sl2) will be used in the proof of complete reducibility; there is a conceptual proof
using the notion of Killing form, but for sl2 it’s just as easy to give a direct check:

Lemma 4.3. The element C in R = U(sl2) is central.

Proof. This amounts to showing that the commutators CH − HC and CX± − X±C in R
vanish. By direct computation with commutators in R and the commutator relations in sl2,
the second expression for C yields

[C,H] = 4([X−, H]X+ +X−[X+, H]) = 4(2X−X+ − 2X−X+) = 0.

By symmetry in the inital expression for C (and its invariance under swaping the roles of
X+ and X−, which amounts to replacing H with −H), to prove that [C,X±] = 0 in R it
suffices to treat the case of X+.

Again using the second expression for C, since [H,X+] = 2X+ we have

[C,X+] = [H2, X+] + 4X+ + 4[X−X+, X+].
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But [H2, X+] = 4X+(H + 1) because

H2X+ −X+H2 = H([H,X+] +X+H)−X+H2 = H(2X+ +X+H)−X+H2

= HX+(2 +H)−X+H2

and substituting the identity HX+ = [H,X+] +X+H = 2X+ +X+H = X+(2 +H) yields

H2X+ −X+H2 = X+(2 +H)2 −X+H2 = X+(4 + 4H).

Thus, [C,X+] = 4X+(H+1)+4X++4(X−(X+)2−X+X−X+). Since X−X+ = [X−, X+]+
X+X− = −H +X+X−, inside R we have

X−(X+)2 −X+X−X+ = −HX+ +X+X−X+ −X+X−X+ = −HX+,

and hence

CX+ −X+C = 4X+(H + 1) + 4X+ − 4HX+ = 8X+ − 4[H,X+] = 0.

�

The upshot of our study of C is that the given short exact sequence is C-equivariant with
C acting on Vm via multiplication by m(m + 2), and the C-action on E is sl2-equivariant
since C is central in R. Thus, if m > 0 (so m(m+ 2) 6= 0 in k) then the m(m+ 2)-eigenspace
for C on E is an sl2-subrepresentation which does not contain the trivial line k and so must
map isomorphically onto the irreducible Vm, thereby splitting the exact sequence as sl2-
modules. If instead m = 0 then the representation of sl2 on E corresponds to a Lie algebra
homomorphism

sl2 →
{(

0 ∗
0 0

)}
which we want to vanish (so as to get the “triviality” of the sl2-action on E, hence the desired
splitting). In other words, it suffices to show that sl2 does not admit the trivial 1-dimensional
Lie algebra as a quotient. Since [H,X±] = ±2X±, any abelian Lie algebra quotient of sl2
must kill X±, so it also kills [X+, X−] = H and the abelian quotient vanishes. �

Remark 4.4. In HW4, explicit models are given for the finite-dimensional irreducible C-linear
representations of SO(3) via harmonic polynomials in 3 variables (with coefficients in C).
These are the representations Vm of SU(2) of dimension m = 2`+1. Under the identification
of so(3)C with sl2(C), the set of H-eigenvalues is {−2`,−2`+2, . . . , 0, . . . , 2`−2, 2`}, and an
explicit nonzero element with H-eigenvalue 0 is computed in pp. 118–121 in the course text.
In terms of spherical coordinates (r, θ, ϕ), such an eigenvector is the `th Legendre polynomial
evaluated at cosϕ. (The course text swaps the usual meaning of θ and ϕ, so it writes cos θ
for what is usually denoted as cosϕ.)

When switching between representations of SO(3) and sl2(C) via the unitarian trick,
Lie-theoretic invariance under H translates into invariance under the 1-parameter subgroup
of SO(3) given by rotation of arbitrary angles around the z-axis (an obvious property for
polynomials in cosϕ!) since the velocity at e for this 1-parameter subgroup turns out to be
a C×-multiple of H via the isomorphism sl2(C) ' so(3)C.


