
Integral Ring Extensions

Suppose A ⊂ B is an extension of commutative rings. We say that an element b ∈ B is integral
over A if bn + a1b

n−1 + · · ·+ an = 0, for some aj ∈ A. We say that the ring B is integral over A
if every element of B is integral over A.

For any b ∈ B, there is the subring A[b] ⊂ B, the smallest subring of B containing A and b.

Proposition 1 The following conditions are equivalent:
(i) b ∈ B is integral over A.

(ii) The subring A[b] ⊂ B is finitely generated as an A-module.
(iii) A[b] ⊂ C ⊂ B, where C is some subring of B which is finitely generated as an A-module.
(iv) A[b] ⊂ M ⊂ B, where M is some A[b]-submodule of B which is finitely generated as an

A-module.
(v) There exists an A[b]-module M which is finitely generated as an A-module and faithful as an

A[b]-module. (Faithful means if c ∈ A[b] and cm = 0 for all m ∈M , then c = 0.)

Proof (i)⇔ (ii): If b is a root of a monic, degree n polynomial over A, then A[b] is spanned as an
A-module by {1, b, b2, . . . , bn−1}. Conversely, if A[b] is spanned as an A-module by finitely many
elements, then at most finitely many powers of b, say {1, b, b2, . . . , bn−1}, appear in formulas for
these elements. It follows that these powers of b span A[b] as an A-module, hence bn is an A-linear
combination of lower powers of b.

(ii) ⇒ (iii) ⇒ (iv): Completely trivial.
(iv) ⇒ (v): The module M of (iv) is faithful as an A[b]-module since 1 ∈M , where 1 ∈ A[b] is

the multiplicative identity. Obviously c1 = 0 implies c = 0.
(v) ⇒ (i): Say M is spanned by {m1, . . . ,mn} over A. Each element bmi =

∑n
j=1 aijmj , for

suitable aij ∈ A. Let T = (aij), an n × n matrix over A. Then (bI − T ) is an n × n matrix
with entries in B, and the column vector (m1, . . . ,mn)T is in the kernel of (bI − T ), regarded as a
transformation Mn →Mn. If (bI − T )∗ is the adjugate matrix of (bI − T ), then (bI − T )∗(bI − T )
= det(bI − T )I, a scalar diagonal matrix over A[b]. It follows that det(bI − T )mi = 0 for all i,
hence det(bI − T ) = 0, since M is a faithful A[b]-module. But det(bI − T ) = 0 is a monic, degree
n polynomial equation for b over A. �

(Remark: If A is Noetherian then another condition equivalent to (i) through (v) above is that
A[b] ⊂ M as A-modules, for some finitely generated A-module M . Because then A[b] is finitely
generated as A-module, by the Noetherian assumption.)

Corollary 1 If a ring B ⊃ A is finitely generated as an A-module, then every element of B is
integral over A. 2

Corollary 2 The set of all elements of B which are integral over A forms a subring of B.

Proof If b, c ∈ B are integral over A, then the ring A[b, c] is finitely generated as A-module.
Specifically, a spanning set for A[b, c] over A will exist of the form {bicj}, 0 ≤ i < n, 0 ≤ j < m. It
follows from Corollary 1 that all elements of A[b, c], for example b+ c and bc, are integral over A.�

The subring Â ⊂ B consisting of all elements of B which are integral over A is called the integral
closure of A in B. We say that A is integrally closed in B if Â = A.

Corollary 3 If A ⊂ B ⊂ C are three rings with B integral over A and C integral over B, then C
is integral over A.
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Proof An element c ∈ C is integral over A[b1, . . . , bn], where the bj are coefficients of some monic
polynomial over B with root c. Each bi is integral over A, so A[b1, . . . , bn, c] is finitely generated
as an A-module. A specific set of A-module generators will have the form of a set of monomials in
the elements bi and c, with bounded exponents. �

Corollary 4 The integral closure of A in B is integrally closed in B, that is, ˆ̂
A = Â ⊂ B.

Proof Apply Corollary 3 to A ⊂ Â ⊂ ˆ̂
A. �

Suppose the ring A is an integral domain, with field of fractions K. We say that A is an
integrally closed domain if A is integrally closed in K.

Proposition 2 A UFD is integrally closed.

Proof This is the same as the familiar result that the only rational roots of monic polynomials
with integer coefficients are themselves integers. Namely if r = p/q is a fraction in lowest terms in
K with rn + a1r

n−1 + . . .+ an = 0 and aj ∈ A, multiply by qn to see that q divides pn in A. But
this contradicts p, q relatively prime unless q is a unit, that is, r ∈ A. �

Next consider an algebraic field extension K ⊂ L, where K is the field of fractions of some
integral domain A. Every element of L is the root of some polynomial with coefficients in A, since
one can take the minimal monic polynomial for x over K and clear denominators.

Proposition 3 Suppose x ∈ L is the root of a polynomial over A with leading coefficient a ∈ A.
Then x is integral over A[1/a] and ax is integral over A.

Proof Divide the relation axn + bxn−1 + · · ·+ c = 0 by a to see the first statement. Multiply this
relation by an−1 to see the second statement. �

In the situation above, A ⊂ K ⊂ L, denote by B the integral closure of A in L. From the last
Proposition, it follows that L is the field of fractions of B. It also follows that if |L : K| is finite and
if {x1, . . . , xn} is a vector space basis of L over K, then for some a ∈ A the elements {ax1, . . . , axn}
belong to B and, of course, still form a vector space basis of L over K.

In general, an element x ∈ L might satisfy some monic polynomial over A and yet its minimum
monic polynomial over K might not have coefficients in A. For example, if A is not integrally closed
in its own field of fractions K and if L = K, this certainly occurs. An example of a domain which is
not integrally closed is Z[

√
5]. The element (1 +

√
5)/2 satisfies the monic equation x2− x− 1 = 0.

But this is essentially the only thing about minimal polynomials that can go wrong.

Proposition 4 Suppose A is an integrally closed domain with field of fractions K. If K ⊂ L is
an algebraic extension and if x ∈ L is integral over A, then, in fact, the minimum polynomial for
x over K has all its coefficients in A.

Proof Say g(T ) is a monic polynomial over A which has x as a root. Then the minimum polyno-
mial, f(T ), for x over K divides g(T ) in K[T ], hence all the roots xj of f(T ) in any larger field are
integral over A. But f(T ) =

∏
i(T − xi), possibly with repeated factors in the non-separable case,

has coefficients which are sums of products of the xj , hence these coefficients are also integral over
A. Since these coefficients belong to K, and A is integrally closed in K, the coefficients of f(T ) all
belong to A, as claimed. �
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We now want to continue studying the situation of an integrally closed integral domain A, with
field of fractions K, and the integral closure B ⊃ A inside some finite algebraic extension L ⊃ K.
Very important special cases are when A = Z and K = Q, in which case B is the ring of algebraic
integers in some finite extension of Q, and when A = k[z] and K = k(z), the field of rational
functions in one variable over some field k, e.g. k = C. In this case, L is a “function field in one
variable,” that is, a finitely generated extension of k of transcendence degree one, and B turns out
to be the affine coordinate ring of a nonsingular affine algebraic curve, in particular, a Riemann
surface.

Proposition 5 If K ⊂ L is a finite separable extension then there exist K-vector space bases
{b∗1, . . . , b∗n} of L such that B ⊂ ⊕jAb

∗
j , the free rank n module over A spanned by the {b∗j} inside

L. In particular, if A is Noetherian, then B is Noetherian. If A is a PID, (e.g. A = Z or k[z]),
then B is a free module of rank n over A, where n = |L : K|.

Proof This takes some steps. We exploit the trace, Tr : L → K. Separability implies Tr 6= 0.
Of course, in characteristic 0, Tr(1) = n = |L : K|, so separability is kind of behind the scenes in
the argument that Tr 6= 0. In characteristic p, separability is used to make sense of the trace as a
K-valued function that is a sum of distinct field homomorphisms. After that, linear independence
of characters is needed in characteristic p to conclude Tr 6= 0. The formula Tr(1) = n remains
correct, but if p | n then n = 0.

Consider the symmetric K-bilinear pairing, Tr : L × L → K, defined by Tr(x, y) = Tr(xy).
For each y 6= 0 ∈ L, there exists elements x ∈ L with Tr(x, y) 6= 0, since any element of L can be
written xy for suitable x, and Tr 6= 0 on L. Thus, the pairing Tr defines a K-linear injection L→
L∗ = HomK(L,K) which assigns to y ∈ L the K-linear functional ty(x) = Tr(x, y) = Tr(xy) ∈ K.
Since L is finite dimensional over K, the trace form thus defines an isomorphism L ∼= L∗.

Choose a vector space basis {b1, . . . , bn} of L over K, with all bj ∈ B. Let {b∗1, . . . , b∗n} ⊂ L
denote the dual basis with respect to the trace form identification L ∼= L∗. Specifically, the {b∗j}
are characterized by the relations Tr(bib∗j ) = δij .

I claim that B ⊂ ⊕jAb
∗
j , the free rank n module over A spanned by the {b∗j} inside L. In

particular, if A is Noetherian, then B is Noetherian as an A-module, so it is certainly Noetherian
as a ring. (Ideals in B are also A-submodules of B.) If, further, A is a PID, then it follows that
B is a free A-module of rank no greater than n. The rank must be exactly n, since B contains
vector space bases of L over K, such as the basis b1, . . . , bn we started with, and these n elements
are certainly linear independent over A.

How do we prove B ⊂ ⊕jAb
∗
j? The key is that if b′ ∈ B ⊂ L, then Tr(b′) ∈ A ⊂ K, since

Tr(b′) ∈ K is a sum of conjugates of b′, hence integral over A. But we are assuming A is integrally
closed in K. So, now, if b ∈ B, write b =

∑n
i=1 cib

∗
i ∈ L, with ci ∈ K. I will show all ci ∈ A. Since

bj ∈ B, we have bbj ∈ B, hence, by the key remark Tr(bbj) ∈ A. But Tr(bbj) = Tr(
∑n

i=1 cib
∗
i bj) = cj ,

since Tr is K-linear and Tr(b∗i bj) = δij . �

When A = Z and K = Q, there is another important point of view which shows that the
integral closure B ⊃ Z in a finite algebraic extension L ⊃ Q is a free Z-module. If n = |L : Q|, let
σ = (σ1, σ2, . . . , σn) : L→ Cn be the embedding in affine space over the complex numbers defined
by the n distinct field embeddings σj : L → C. So, if x ∈ L, the coordinates of σ(x) are the
conjugates of x, perhaps with repetitions.

Proposition 6 In any bounded region in Cn, with respect to the usual norm, there exist only
finitely many vectors σ(x), with x ∈ B ⊂ L.
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Proof If all the conjugates xj of x satisfy ‖xj‖ < r, then the coefficients of the minimum poly-
nomial f(T ) =

∏
j(T − xj) of x are bounded by some simple function of r. Since these coefficients

are ordinary integers, there are only finitely many such polynomials f(T ) with deg(f) ≤ n whose
coefficients satisfy these bounds. �

One now proceeds to show that σ(B) ⊂ Cn is a discrete lattice, an additive subgroup isomorphic
to Zn, with no accumulation points. Begin by choosing 0 6= b1 ∈ B with ‖σ(b1)‖ as small as possible.
On the real line in Cn containing σ(b1), the points of σ(B) consist only of integral multiples of
σ(b1), an additive copy of Z. Then choose b2 ∈ B so that σ(b2) is as close as possible to this first
line but not on this first line. Argue that the points in σ(B) which belong to the real plane spanned
by σ(b1) and σ(b2), consist exactly of the Z-linear combinations of σ(b1) and σ(b2), and form a
discrete lattice isomorphic to Z⊕ Z. Continue until the maximal rank, namely n, of subgroups of
σ(B) is reached. Details are left to the reader, or, as Descartes wrote when he was too lazy to write
out detailed proofs of his assertions, “I would not wish to deny the reader the pleasure of providing
the remainder of the proof.”

Proposition 7 Suppose A is an integrally closed domain, B the integral closure of A in some finite
separable extension of the fraction field of A. Suppose J ⊂ B is a non-zero ideal of B, lying over
I ⊂ A. If 0 6= x ∈ J , then 0 6= N(x) ∈ I, where N is the field norm. In particular, I is non-zero.

Proof N(x) is a power of the constant coefficient of the minimal monic polynomial 0 = f(x) =
xn + a1x

n−1 + . . .+ an for x over A. In B, x divides this constant coefficient, hence the coefficient
belongs to J ∩A = I. �

Except for the appearance of the field norm in the statement of Proposition 7, the hypotheses
are a bit silly. If A ⊂ B is any integral extension of integral domains and if (0) 6= J ⊂ B is a
non-zero ideal then (0) 6= I = J ∩ A. Namely, if 0 6= x ∈ J and if xn + a1x

n−1 + · · · an = 0 is an
integral formula of least degree for x over A, then an 6= 0. Otherwise, since B is a domain, x would
satisfy a lower degree monic equation. But now an is a multiple of x in B, so an ∈ J ∩A.
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