
The Going-Up Theorem

Throughout this discussion, we fix an integral ring extension A ⊂ B.

Theorem 1 (Going Up) Suppose P ⊂ A is a prime ideal. Then there exists a prime ideal Q ⊂ B
with Q ∩A = P . 2

Lemma 1 If J ⊂ B is an ideal and J ∩A = I, then A/I ⊂ B/J is an integral ring extension.

Proof An element b mod J ∈ B/J satisfies the same monic polynomial over A/I that b satisfies
over A. �

The theorem and this first lemma combine to give the following result, which is also sometimes
called the Going Up Theorem. One just applies the theorem to A/Pm ⊂ B/Qm.

Theorem 2 If A ⊂ B is an integral ring extension and if P0 ⊂ P1 ⊂ · · · ⊂ Pn is a chain of
prime ideals in A, and if Q0 ⊂ Q1 ⊂ · · · ⊂ Qm is a chain of prime ideals of B with Qj ∩ A = Pj,
0 ≤ j ≤ m < n, then the chain in B can be extended to Qm ⊂ Qm+1, with Qm+1 ∩A = Pm+1. 2

We first establish two more lemmas, then prove the Going Up theorem. Lemma 3 is the real key.

Lemma 2 If S ⊂ A is a multiplicative set, then S−1A ⊂ S−1B is an integral ring extension.

Proof First of all, S ⊂ A ⊂ B, so S is a multiplicative subset of B and S−1B is defined. Next,
even though iS : A → S−1A might not be injective, the natural map S−1A → S−1B is injective.
Namely, if [a/s] = 0 ∈ S−1B, then as′ = 0 for some s′ ∈ S and hence [a/s] = 0 ∈ S−1A. Finally, a
monic degree n polynomial with coefficients in S−1A that has [b/s] ∈ S−1B as a root is obtained
by dividing by sn a monic degree n polynomial with coefficients in A that has b as a root. �

Lemma 3 If Q ⊂ B is an ideal and Q ∩ A = P , then Q is maximal in B if and only if P is
maximal in A.

Proof If P is maximal then A/P is a field and every element of B/Q is algebraic over A/P .
Hence B/Q is a field. Conversely, if Q is maximal and x 6= 0 ∈ A/P , then 1/x ∈ B/Q satisfies a
monic polynomial over A/P , say (1/x)n + a1(1/x)n−1 + · · ·+ an = 0. Multiply by xn and solve for
1/x ∈ A/P . Thus, A/P is a field. �

Proof (Going-Up) Let S = A − P . Choose any maximal ideal QS ⊂ S−1B. Then, by Lemma
2 and Lemma 3, QS ∩ S−1A is a maximal ideal in the local ring S−1A, hence QS ∩ S−1A = P e,
the unique maximal ideal of S−1A. Now let Q = Qc

S = (jS)−1QS ⊂ B, where jS : B → S−1B is
the canonical map. Then Q ⊂ B is a prime ideal and Q ∩ A = P , since P ec = (iS)−1P e = P ⊂ A,
where iS : A→ S−1A is the canonical map.

(To follow the manipulations with the four prime ideals here, it helps to think in terms of the
following diagram:

A

iS
��

⊂ B

jS

��
S−1A ⊂ S−1B

One starts with a maximal ideal QS ⊂ S−1B. Two contraction steps clockwise around the
diagram takes you first to P e, the unique maximal ideal of S−1A = A(P ), and then to P ⊂ A. Two
contraction steps counterclockwise around the diagram takes you first to some prime ideal Q ⊂ B,
which then must contract to P ⊂ A.) �
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Here is a final (easy) result about chains of prime ideals in an integral ring extension A ⊂ B.

Theorem 3 If A and B are integral domains and if Q is a non-zero prime ideal of B, then Q∩A
is a non-zero prime ideal of A. More generally, for any integral extension A ⊂ B, if Q ⊂ Q′

are distinct prime ideals of B, then P ⊂ P ′ are distinct prime ideals of A, where P = Q ∩ A
and P ′ = Q′ ∩ A. Thus, any strictly increasing chain of prime ideals in B contracts to a strictly
increasing chain of prime ideals in A.

Proof The first statement implies the second, by looking at A/P ⊂ B/Q, and the non-zero prime
Q′/Q ⊂ B/Q. For the first statement, if 0 6= x ∈ Q, and if f(x) = xn +a1x

n−1 + · · ·+an is a monic
polynomial over A of least degree with f(x) = 0, then an 6= 0, since B is an integral domain. But
obviously f(x) = 0 implies an ∈ Q ∩A. �
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