Finite Multiplicative Subgroups of a Field

Let $G \subset F^*$ be a finite group. There are several ways to prove that G is cyclic. All proofs are based on the fact that the equation $x^d = 1$ can have at most d solutions in a field F.

Proof (I) Use the structure theorem for finite abelian groups. If $|G| = n$ and G is not cyclic, then the structure theorem yields the existence of $d < n$ so that $x^d = 1$ for all $x \in G$. Contradiction.

Proof (II) First give an elementary argument that if G is a finite abelian group and $x, y \in G$, then there exists $z \in G$ so that $|z| = \text{lcm}(|x|, |y|)$. Namely, if the orders of x and y are relatively prime, take $z = xy$. Otherwise, look at the prime power factorizations of the orders of x and y. Any divisor of $|x|$ will be the order of some power of x, since $\langle x \rangle$ is a cyclic group. So, you find z as a product of various powers of x and y, corresponding to the various maximal prime power factors of $|x|$ and $|y|$, as in the relatively prime case. It then follows that for a finite abelian group G there is an integer d so that G contains an element of order d and $x^d = 1$ for all x in G. Hence, if $x^d = 1$ has at most d solutions then G is cyclic.

Proof (III) Suppose G is a finite group so that for each integer d the equation $x^d = 1$ has at most d solutions in G. Then, even without assuming G abelian at the outset, you can prove G is cyclic. Namely, first of all any cyclic group of order m has exactly $\phi(s)$ elements of order s, for each divisor s of m, where $\phi(s)$ is the Euler phi function. (A consequence is the Euler formula $m = \sum_{s|m} \phi(s)$, the sum taken over the divisors s of m.) Now, back to our group G. For a given divisor d of $n = |G|$, either group G has no element of order d, or it has at least one, in which case G contains a cyclic group of order d, which, by hypothesis, must contain all solutions of $x^d = 1$ in G. Thus, in this case, G contains exactly $\phi(d)$ elements of order d. Now, we know $|G| = n = \sum_{d|n} \phi(d)$, the sum over the divisors of n, by the Euler result. But all elements of G have some order d which divides n, and it is impossible that any order $d \mid n$ is “left out”, since there are either 0 or $\phi(d)$ elements of order d in G. The sum would not add up to n if 0 ever occurred. In particular, G contains elements of order n.
