

NAKAYAMA LEMMAS

First, recall that the intersection of all *prime* ideals in a commutative ring is the nil-radical, the ideal of elements for which some power is 0. There is also a description of sorts of the intersection of all *maximal* ideals, which is called the *Jacobson radical*.

PROPOSITION. If A is a commutative ring, with invertible elements A^* , then

$$\bigcap_{Q \text{ max}} Q = \{x \in A \mid 1 + rx \in A^*, \text{ all } r \in A\}.$$

PROOF. If x is in all maximal ideals then $1 + rx$ is in no maximal ideal, hence is invertible. Conversely, if x is not in some maximal ideal Q , then $1 = y - rx$ for some $y \in Q$, $r \in A$. Then $1 + rx = y \in Q$ is not invertible.

We also recall that for any A -module M , the map $M \rightarrow \prod_{P \text{ prime}} M_{(P)}$ is injective. One can even take the product of localizations at the maximal ideals. Because an element x in the kernel is annihilated by some $s_P \notin P$, for each prime ideal P . These $\{s_P\}$ generate the unit ideal of A , hence $1x = 0$. Another version of the statement here is that if all localizations $M_{(P)} = (0)$, then $M = (0)$.

Now we come to several variants of Nakayama's Lemma.

VERSION 1. If $I \subset A$ is an ideal contained in all maximal ideals of A and if M is a finitely generated A -module with $M = IM$, then $M = (0)$.

VERSION 2. If A is a local ring with maximal ideal $m \subset A$ and if $N \subset M$ are A -modules with M finitely generated and with $N + mM = M$, then $N = M$.

[Note: Since only finitely many elements of N are seen in formulas for the generators of M , one might as well assume in Version 2 that N is finitely generated.]

VERSION 3. If A is a local ring with maximal ideal $m \subset A$ and if $\{x_1, \dots, x_n\}$ are finitely many elements of a finitely generated A -module M such that the residue classes $\{\bar{x}_1, \dots, \bar{x}_n\}$ span the vector space M/mM over A/m , then $\{x_1, \dots, x_n\}$ generate M as A -module.

PROOFS. First, (2) \Leftrightarrow (3) just by taking N to be the submodule generated by $\{x_1, \dots, x_n\}$, and using the note.

Next, (1) \Rightarrow (2) because $\frac{N+mM}{N} = m(\frac{M}{N})$. Then apply (1) to the module M/N .

To show (2) \Rightarrow (1), it suffices to show $M_{(Q)} = (0)$, for all maximal ideals $Q \subset A$. But $I \subset Q$, so if $M = IM$ then localizing gives $M_{(Q)} = QM_{(Q)} = (0) + QM_{(Q)}$. Now apply (2) with $N = (0)$.

Now we have three equivalent statements. We will see that Version (1) follows from a module form of the Cayley-Hamilton Theorem.

PROPOSITION (Cayley-Hamilton) Suppose $I \subset A$ is an ideal and $\phi : M \rightarrow IM$ is an A -module homomorphism, where M is an A -module generated by $\{x_1, \dots, x_n\}$. Then ϕ satisfies an identity

$$\phi^n + a_1\phi^{n-1} + \dots + a_n \equiv 0 \in \text{End}(M),$$

with $a_j \in I^j$.

PROOF. Write $\phi x_i = \sum_j a_{ij}x_j$, and form the $n \times n$ matrix $(\phi Id_n - (a_{ij}))$ over the ring $A[\phi]$. This matrix acts on M^n , with $(\phi Id_n - (a_{ij}))(x_1, \dots, x_n)^t = (0)^t$. There is the adjugate matrix $(\phi Id_n - (a_{ij}))^*$ with

$$(\phi Id_n - (a_{ij}))^*(\phi Id_n - (a_{ij})) = \det(\phi Id_n - (a_{ij}))Id_n.$$

It follows that $\det(\phi Id_n - (a_{ij}))$ annihilates all x_j , hence is the 0 endomorphism of M . Expanding the determinant shows the coefficient of ϕ^{n-j} belongs to I^j .

Of course, we recognize $P(T) = \det(TId_n - (a_{ij}))$ exactly as the “characteristic polynomial” of the endomorphism ϕ , with respect to the generating set $\{x_1, \dots, x_n\}$ of M .

Version (1) of Nakayama’s Lemma follows by taking $\phi = Id = \cdot 1 : M \rightarrow M = IM$. Cayley-Hamilton gives $(1 + a)M = (0)$, for some $a \in I$. But $1 + a \in A^*$ is invertible if I is contained in every maximal ideal of A , so $M = (0)$.

An alternate proof of Version (1) of Nakayama’s Lemma is by induction on the least number of generators of M . With one generator, x , one has $(1 - a)x = 0$, with $1 - a \in A^*$, so $x = 0$. But then with n generators $\{x_1, \dots, x_n\}$, with n least, one has $(1 - a_1)x_1 = \sum_{j=2}^n a_jx_j$, and again $(1 - a_1) \in A^*$, so generator x_1 is redundant. Thus $M = (0)$ is the only possibility.

We will give some applications of Nakayama’s Lemma.

APPLICATION 1. If A is a Noetherian local ring with maximal ideal $m \subset A$ and if $m^{n+1} = m^n$ then $m^n = (0)$. If A is a Noetherian integral domain and $P \subset A$ is a prime ideal then the powers $\{P^n\}$, $n \geq 1$, are distinct.

PROOF. The first statement is immediate from Nakayama (1) with $M = m^n$. For the second statement, since A is a domain, all localization morphisms are injective. If $P^{n+1} = P^n$, localize at P and conclude from the first statement that $P^n = (0)$. But this is absurd, since A is a domain.

We can prove a stronger result by bringing in primary decomposition.

APPLICATION 2. If A is a Noetherian local ring with maximal ideal $m \subset A$, then

$$\bigcap_{n \geq 1} m^n = (0).$$

If A is a Noetherian integral domain and $P \subset A$ is a prime ideal, then $\bigcap P^n = (0)$.

PROOF. Write $J = \bigcap m^n$ and consider a primary decomposition $mJ = \bigcap Q_i$. By Nakayama (1), it suffices to prove $J \subset mJ$, that is, $J \subset Q_i$, all i . Suppose $a \in J - Q_i$. If $\sqrt{Q_i} \neq m$, choose $b \in m - \sqrt{Q_i}$. Then $ab \in mJ \subset Q_i$, but $a \notin Q_i$ and $b \notin \sqrt{Q_i}$, which contradicts Q_i primary. But if $\sqrt{Q_i} = m$, then $J \subset m^n \subset Q_i$, for some n . In all cases, we've proved $J \subset Q_i$.

The second statement concerning a prime ideal in a Noetherian domain is proved by localizing, as in Application 1.

APPLICATION 3. A finitely generated projective module E over a local ring A is free.

PROOF. We can write $E \oplus F = A^n$, for some F and n . If $m \subset A$ is the maximal ideal, then

$$\frac{E}{mE} \oplus \frac{F}{mF} = \left(\frac{A}{m}\right)^n,$$

as vector spaces over A/m . Choose bases $\{\bar{x}_1, \dots, \bar{x}_r\}$ and $\{\bar{y}_1, \dots, \bar{y}_s\}$ for E/mE and F/mF . Of course, $r + s = n$. Nakayama (3) says $\{x_1, \dots, x_r\}$ and $\{y_1, \dots, y_s\}$ generate E and F over A . We claim these generating sets are A -linearly independent, proving E and F are free A -modules.

Namely, one can express the x_i and y_j as column vectors in A^n , forming a $n \times n$ matrix. Reducing mod mA^n , these column vectors form a basis, hence the determinant is a unit in A . But this means the matrix with x 's and y 's is invertible over A , hence has (0) null space. This means the x 's and y 's are indeed linearly independent.