
NAKAYAMA LEMMAS

First, recall that the intersection of all prime ideals in a commutative ring is
the nil-radical, the ideal of elements for which some power is 0. There is also a
description of sorts of the intersection of all maximal ideals, which is called the
Jacobson radical.

PROPOSITION. If A is a commutative ring, with invertible elements A∗, then⋂
Q max

Q = {x ∈ A | 1 + rx ∈ A∗, all r ∈ A}.

PROOF. If x is in all maximal ideals then 1 + rx is in no maximal ideal, hence
is invertible. Conversely, if x is not in some maximal ideal Q, then 1 = y − rx
for some y ∈ Q, r ∈ A. Then 1 + rx = y ∈ Q is not invertible.

We also recall that for any A-module M , the map M →
∏

P primeM(P ) is
injective. One can even take the product of localizations at the maximal ideals.
Because an element x in the kernel is annihilated by some sP 6∈ P , for each prime
ideal P . These {sP } generate the unit ideal of A, hence 1x = 0. Another version
of the statement here is that if all localizations M(P ) = (0), then M = (0).

Now we come to several variants of Nakayama’s Lemma.

VERSION 1. If I ⊂ A is an ideal contained in all maximal ideals of A and if M
is a finitely generated A-module with M = IM , then M = (0).

VERSION 2. If A is a local ring with maximal ideal m ⊂ A and if N ⊂M are
A-modules with M finitely generated and with N +mM = M , then N = M .

[Note: Since only finitely many elements of N are seen in formulas for the gener-
ators of M , one might as well assume in Version 2 that N is finitely generated.]

VERSION 3. If A is a local ring with maximal ideal m ⊂ A and if {x1, . . . , xn}
are finitely many elements of a finitely generated A-module M such that the
residue classes {x̄1, . . . , x̄n} span the vector space M/mM over A/m, then
{x1, . . . , xn} generate M as A-module.

PROOFS. First, (2)⇔ (3) just by taking N to be the submodule generated by
{x1, . . . , xn}, and using the note.

Next, (1)⇒ (2) because N+mM
N = m(M

N ). Then apply (1) to the module M/N .

To show (2)⇒ (1), it suffices to show M(Q) = (0), for all maximal ideals Q ⊂ A.
But I ⊂ Q, so if M = IM then localizing gives M(Q) = QM(Q) = (0) +QM(Q).
Now apply (2) with N = (0).

Now we have three equivalent statements. We will see that Version (1) follows
from a module form of the Cayley-Hamilton Theorem.
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PROPOSITION (Cayley-Hamilton) Suppose I ⊂ A is an ideal and φ : M →
IM is an A-module homomorphism, where M is an A-module generated by
{x1, . . . , xn}. Then φ satisfies an identity

φn + a1φ
n−1 + · · ·+ an ≡ 0 ∈ End(M),

with aj ∈ Ij .

PROOF. Write φxi =
∑

j aijxj , and form the n× n matrix (φIdn − (aij)) over
the ring A[φ]. This matrix acts on Mn, with (φIdn− (aij))(x1, . . . , xn)t = (0)t.
There is the adjugate matrix (φIdn − (aij))∗ with

(φIdn − (aij))∗(φIdn − (aij)) = det(φIdn − (aij))Idn.

It follows that det(φIdn− (aij)) annihilates all xj , hence is the 0 endomorphism
of M . Expanding the determinant shows the coefficient of φn−j belongs to Ij .

Of course, we recognize P (T ) = det(TIdn − (aij)) exactly as the “character-
isitic polynomial” of the endomorphism φ, with respect to the generating set
{x1, . . . , xn} of M .

Version (1) of Nakayama’s Lemma follows by taking φ = Id = ·1 : M → M =
IM . Cayley-Hamilton gives (1 + a)M = (0), for some a ∈ I. But 1 + a ∈ A∗ is
invertible if I is contained in every maximal ideal of A, so M = (0).

An alternate proof of Version (1) of Nakayama’s Lemma is by induction on the
least number of generators of M . With one generator, x, one has (1− a)x = 0,
with 1 − a ∈ A∗, so x = 0. But then with n generators {x1, . . . , xn}, with n
least, one has (1 − a1)x1 =

∑n
j=2 ajxj , and again (1 − a1) ∈ A∗, so generator

x1 is redundant. Thus M = (0) is the only possibility.

We will give some applications of Nakayama’s Lemma.

APPLICATION 1. If A is a Noetherian local ring with maximal ideal m ⊂ A
and if mn+1 = mn then mn = (0). If A is a Noetherian integral domain and
P ⊂ A is a prime ideal then the powers {Pn}, n ≥ 1, are distinct.

PROOF. The first statement is immediate from Nakayama (1) with M = mn.
For the second statement, since A is a domain, all localization morphisms are
injective. If Pn+1 = Pn, localize at P and conclude from the first statement
that Pn = (0). But this is absurd, since A is a domain.

We can prove a stronger result by bringing in primary decomposition.

APPLICATION 2. If A is a Noetherian local ring with maximal ideal m ⊂ A,
then ⋂

n≥1

mn = (0).

If A is a Noetherian integral domain and P ⊂ A is a prime ideal, then
⋂
Pn =

(0).
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PROOF. Write J =
⋂
mn and consider a primary decomposition mJ =

⋂
Qi.

By Nakayama (1), it suffices to prove J ⊂ mJ , that is, J ⊂ Qi, all i. Suppose
a ∈ J − Qi. If

√
Qi 6= m, choose b ∈ m −

√
Qi. Then ab ∈ mJ ⊂ Qi, but

a 6∈ Qi and b 6∈
√
Qi, which contradicts Qi primary. But if

√
Qi = m, then

J ⊂ mn ⊂ Qi, for some n. In all cases, we’ve proved J ⊂ Qi.

The second statement concerning a prime ideal in a Noetherian domain is proved
by localizing, as in Application 1.

APPLICATION 3. A finitely generated projective module E over a local ring
A is free.

PROOF. We can write E⊕F = An, for some F and n. If m ⊂ A is the maximal
ideal, then

E

mE
⊕ F

mF
=
(
A

m

)n

,

as vector spaces over A/m. Choose bases {x̄1, . . . , x̄r} and {ȳ1, . . . , ȳs} for
E/mE and F/mF . Of course, r + s = n. Nakayama (3) says {x1, . . . , xr}
and {y1, . . . , ys} generate E and F over A. We claim these generating sets are
A-linearly independent, proving E and F are free A-modules.

Namely, one can express the xi and yj as column vectors in An, forming a
n × n matrix. Reducing mod mAn, these column vectors form a basis, hence
the determinant is a unit in A. But this means the matrix with x’s and y’s
is invertible over A, hence has (0) null space. This means the x’s and y’s are
indeed linearly independent.
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