The Gauss Lemma and The Eisenstein Criterion

Theorem 1 \(R \) a UFD implies \(R[X] \) a UFD.

Proof First, suppose \(f(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n \), for \(a_j \in R \). Then define the content of \(f(X) \) to be \(\text{cont}(f(X)) = \gcd(a_0, \ldots, a_n) = d \) in \(R \). (So \(\text{cont}(f(X)) \) is well-defined up to a unit factor in \(R \).)

(Existence) If \(p \in R \) is irreducible then \(p \) is also irreducible in \(R[X] \). If \(f(X) \in R[X] \), write \(f(X) = dF(X) \), where \(d = \text{cont}(f(X)) \). Then \(\text{cont}(F(X)) = 1 \). We can certainly factor \(d \) into a product of irreducibles in \(R \). Either \(F(X) \) is irreducible in \(R[X] \) or it factors properly as a product of lower degree polynomials (since \(\text{cont}(F(X)) = 1 \)). All the factors will also have content 1 (since a divisor of any factor would divide \(F \)). We can only lower degree of factors finitely often, so we get a factorization of \(F(X) \), and hence \(f(X) \), as a product of irreducibles in \(R[X] \).

(Uniqueness) It suffices to prove each irreducible element of \(R[X] \) generates a prime ideal in \(R[X] \). For irreducibles \(p \in R \) this is clear, since \(R[X]/pR[X] = (R/p)[X] \), which is an integral domain. The general case will follow two lemmas.

Lemma 1 If \(\text{cont}(F(X)) = \text{cont}(G(X)) = 1 \), \(F(X), G(X) \in R[X] \), then \(\text{cont}(F(X)G(X)) = 1 \). More generally, for \(f(X), g(X) \in R[X] \), \(\text{cont}(f(X)g(X)) = \text{cont}(f(X)) \cdot \text{cont}(g(X)) \).

Proof Suppose irreducible \(p \in R \) divides all coefficients of \(F(X)G(X) \). Then \(F(X)G(X) = 0 \) in \((R/p)[X] \), which is an integral domain. Thus \(p \) either divides all coefficients of \(F(X) \) or \(p \) divides all coefficients of \(G(X) \), since one of \(F(X), G(X) \) must be 0 in \((R/p)[X] \). But this contradicts the assumption \(\text{cont}(F) = \text{cont}(G) = 1 \).

In the general case, write \(f = dF, g = d'G \), where \(\text{cont}(F) = \text{cont}(G) = 1 \). Then \(fg = dd'FG \), so, by the first part of the Lemma, \(\text{cont}(fg) = dd' = \text{cont}(f) \cdot \text{cont}(g) \).

Lemma 2 (Gauss) Let \(K \) be the field of fractions of \(R \). If \(P(X) \in R[X] \) factors in \(K[X] \) then \(P(X) \) factors in \(R[X] \) with factors of the same degrees as the \(K[X] \) factors. In particular, if \(P(X) \in R[X] \) is irreducible then \(P(X) \) is also irreducible in \(K[X] \).

Proof Every element of \(K[X] \) can be written \(A(X)/a \), where \(A(X) \in R[X] \) and \(a \in R \). Suppose in \(K[X] \) we have \(P(X) = (A(X)/a)(B(X)/b) \), with \(a, b \in R \) and \(A(X), B(X) \in R[X] \). Then \(abP(X) = A(X)B(X) \in R[X] \). Consider an irreducible factor \(p \) of \(ab \) in \(R \). Then \(A(X)B(X) = 0 \) in \((R/p)[X] \). Thus \(p \) either divides all coefficients of \(A(X) \) or \(p \) divides all coefficients of \(B(X) \). We can then cancel a factor \(p \) in the \(R[X] \) equation \(abP(X) = A(X)B(X) \), without leaving \(R[X] \). By induction on the number of prime factors of \(ab \) in \(R \), conclude \(P(X) = A'(X)B'(X) \in R[X] \), where \(\deg A' = \deg A \) and \(\deg B = \deg B' \).

Now we finish the proof of Theorem 1 by showing \((P(X)) \subset R[X] \) is a prime ideal if \(P(X) \) is irreducible in \(R[X] \). Certainly \(\text{cont}(P(X)) = 1 \), and by the Gauss Lemma \(P(X) \) is irreducible in \(K[X] \). Suppose \(P(X)Q(X) = F(X)G(X) \in R[X] \subset K[X] \). Since \(K[X] \) is a PID, we know \(P(X) \) divides \(F(X) \) or \(G(X) \) in \(K[X] \). Say in \(K[X] \) we have \(F(X) = P(X)(S(X)/s) \), with \(S(X) \in R[X] \), \(s \in R \). Then in \(R[X] \) we have \(P(X)S(X) = sF(X) \). Then \(s \) divides \(\text{cont}(P(X)S(X)) = \text{cont}(S(X)) \) by the first Lemma. So \(S(X)/s \) is in \(R[X] \) and \(F(X) \) is in the ideal \((P(X)) \subset R[X] \).

It is often useful to combine the Gauss Lemma with Eisenstein’s criterion.

Theorem 2 (Eisenstein) Suppose \(A \) is an integral domain and \(Q \subset A \) is a prime ideal. Suppose \(f(X) = q_0 X^n + q_1 X^{n-1} + \cdots + q_n \in A[X] \) is a polynomial, with \(q_0 \notin Q, q_j \in Q, 0 < j \leq n, \) and \(q_n \notin Q^2 \). Then in \(A[X] \), the polynomial \(f(X) \) cannot be written as a product of polynomials of lower degree.
If \(f(X) = g(X)h(X) \) could be factored in \(A[X] \), certainly the leading coefficients of \(g \) and \(h \) are not in \(Q \), since \(q_0 \notin Q \). Reducing mod \(Q \) would give \(\bar{f}(X) = \bar{g}_0X^n = \bar{g}(X)\bar{h}(X) \in \bar{A}X \), where \(\bar{A} = A/Q \). But over the integral domain \(\bar{A} \), the only factorizations of \(\bar{q}_0X^n \) are \(\bar{q}_0X^n = (\bar{a}X^i)(\bar{b}X^j) \), with \(i + j = n \). It follows that all coefficients of \(g(X) \) and \(h(X) \), except the leading coefficients, belong to the ideal \(Q \subset A \), contradicting \(q_0 \notin Q^2 \).

Example 1 \(f(X) = 2X^6 + 25X^4 - 15X^3 + 20X - 5 \in \mathbb{Z}[X] \) has content 1, and is irreducible in \(\mathbb{Z}[X] \) by the Eisenstein criterion for the prime 5. By the Gauss Lemma, \(f(X) \) is irreducible in \(\mathbb{Q}[X] \).