
Math 210B. Inseparable extensions

Since the theory of non-separable algebraic extensions is only non-trivial in positive characteristic, for
this handout we shall assume all fields have positive characteristic p.

1. Separable and inseparable degree

Let K/k be a finite extension, and k′/k the separable closure of k in K, so K/k′ is purely inseparable.
This yields two refinements of the field degree: the separable degree [K : k]s := [k′ : k] and the inseparable
degree [K : k]i := [K : k′] (so their product is [K : k], and [K : k]i is always a p-power).

Example 1.1. Suppose K = k(a), and f ∈ k[x] is the minimal polynomial of a. Then we have f = fsep(xp
n

)

where fsep ∈ k[x] is separable irreducible over k, and ap
n

is a root of fsep (so the monic irreducible fsep is

the minimal polynomial of ap
n

over k). Thus, we get a tower K/k(ap
n

)/k whose lower layer is separable and
upper layer is purely inseparable (as K = k(a)!). Hence, K/k(ap

n

) has no subextension that is a nontrivial
separable extension of k′ (why not?), so k′ = k(ap

n

), which is to say

[k(a) : k]s = [k′ : k] = [k(ap
n

) : k] = deg fsep,

[k(a) : k]i = [K : k′] = [K : k]/[k′ : k] = (deg f)/(deg fsep) = pn.

If one tries to prove directly that the separable and inseparable degrees are multiplicative in towers just
from the definitions, one runs into the problem that in general one cannot move all inseparability to the
“bottom” of a finite extension (in contrast with the separability). This is illustrated by:

Example 1.2. Let k = Fp(X,Y ) be the fraction field of Fp[X,Y ]. Let f = T p2

+ XT p + Y ∈ k[T ]. By
viewing f in Fp(X)[Y, T ] and then in Fp(X,T )[Y ], we see that f is irreducible in k[T ]. Thus, it is well-posed
to define L = k(a) for a root a of f ; this is an extension of k of degree p2.

Clearly f = h(T p) with h = T p + XT + Y visibly separable, so the extension L/k is not separable yet
contains the degree-p subextension E := k(ap) that is separable of degree p over k. We claim that E is the
unique field strictly between L and k, so L/k cannot be expressed as a tower of a separable extension on top
of a purely inseparable one!

Suppose that there is another intermediate extension E′, so necessarily [L : E′] = p = [E′ : k] yet E′ does
not contain E and so there is no room for separability: necessarily E′/k is purely inseparable. But L/k is not
purely inseparable, so L/E′ cannot be purely inseparable (why not?). Thus, the degree-p extension L = E′(a)
over E′ must be separable, which is to say that the minimal polynomial h for a over this hypothetical E′

is a degree-p separable irreducible polynomial over E′. Certainly h|f since f(a) = 0 and f ∈ k[T ] ⊂ E′[T ].
But in a splitting field for f over k, there are exactly p distinct monic linear factors, each appearing with
multiplicity p (why?), so the separable monic degree-p factor h of f has to be the product of those p distinct
monic linear factors. In other words, necessarily hp = f . It follows from staring at the definition of f that
h would have to be T p + xT + y where xp = X and yp = Y , so E′ would have to contain a subfield k(x, y)
with xp = X and yp = Y . But k = Fp(X,Y ), over which the field obtained by adjoining X1/p and Y 1/p has
degree p2 (why?). This is incompatible with containment in the hypothetical extension E′/k of degree p.

But here is an elementary proof using counting of embeddings that both separable and inseparable degrees
are mutliplicative in towers. Since [K : k]s[K : k]i = [K : k] is multiplicative in towers of finite extensions,
to prove multiplicativity of the separable and inseparable degrees it suffices to treat the case of separable
degrees. It suffices to prove the formula

[K : k]s = # Homk(K, k)

for an algebraic closure k/k. Indeed, any such k-embedding j identifies k as an algebraic closure of K (!)
and so if this formula is proved in general and K ′/K is a finite extension then the number # Homj(K

′, k) of

embeddings of K ′ into k over j equals # HomK(K ′,K) = [K ′ : K]s. Thus, summing over all j would yield

# Homk(K ′, k) =
∑
j

# Homj(K
′, k) = # HomK(K ′,K) ·# Homk(K, k),
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equivalently [K ′ : k]s = [K ′ : K]s[K : k]s as desired.
To prove the proposed formula for [K : k]s, let k′/k be the separable closure of k in K, so certainly

[K : k]s := [k′ : k] = # Homk(k′, k). Thus, we just need to check that every k-embedding j : k′ → k extends
uniquely to a k-embedding K → k. Every element of K has a p-power contained in k′, so uniqueness of
p-power roots in k implies that an extension of j to K is certainly unique if it exists (e.g., if a ∈ K and
ap

n ∈ k′ then the only possibility is for a to be taken to j(ap
n

)1/p
n ∈ k). This shows that j has at most

one extension to K, and such an extension certainly exists since j identifies k as an algebraic closure of k′

(namely, as an algebraic extension that is algebraically closed) and thus the algebraic extension K/k′ can be
embedded into k over j.

2. Perfect closure

Let L/k be an algebraic extension of fields. Let k′ ⊆ L be the maximal subextension over k which is
separable over k (concretely, k′ is the set of x ∈ L which are separable over k). We saw in class that L/k′ is
purely inseparable.

We fix an algebraic closure k and we let ks denote the separable closure of k inside of k. That is, ks is
the set of x ∈ k which are separable over k. In particular, ks is separably closed (i.e., it has no nontrivial
separable extensions, or equivalently its algebraic extensions are purely inseparable).

Whereas a separable closure is a “maximal” separable algebraic extension, for the property of perfectness
we seek a “minimality” property: the “smallest” algebraic extension that is perfect. More specifically:

Proposition 2.1. Let K/k be an algebraic extension. The following are equivalent.

(1) The extension K/k is perfect and purely inseparable.
(2) The extension K/k is perfect and is minimal as such in the sense that every perfect extension field

L/k admits a k-embedding K ↪→ L.

Extensions satisfying this property always exist, the embedding in (2) in unique, and any two such K/k are
uniquely k-isomorphic. Explicitly, such an extension is kp = {a ∈ k | apn ∈ k for some n ≥ 0}.

An extension K/k as in this result is called a perfect closure of k. In contrast with separable closures,
which have massive automorphism group in general (the topic of “infinite Galois theory”), perfect closures
have trivial automorphism group. In particular, it is legal to speak of “the” perfect closure (since it is unique
up to unique isomorphism), in contrast with separable closures, normal closures, and algebraic closures.

Proof. Since the p-power map is additive in characteristic p, it is clear that the subset kp ⊂ k as explicitly

defined above is a subfield of k containing k that is purely inseparable over k. Moreover, it is perfect since

if a ∈ kp then the pth root a1/p ∈ k satisfies (a1/p)p
n+1

= ap
n

, which lies in k for sufficiently large n.

Hence, a1/p ∈ kp too, so kp is perfect as well. That is, kp satisfies the properties in (1). It also satisfies the

minimality property in (2). Indeed, if L/k is a perfect extension then we pick an embedding k ↪→ L over
k → L and we claim that kp thereby is carried into L. Indeed, for any a ∈ kp we have ap

n ∈ k for some

large n, yet k ⊂ L with L = Lp, so the element ap
n

in k has a pnth root in L. Thus, working inside L, the
uniqueness of p-power roots in characteristic p implies that this pnth root in L must be a. That is, kp ⊂ L.
This provides the k-embedding in (2).

If K/k is an algebraic extension satisfying either (1) or (2) then we claim that K is k-isomorphic to kp.
First suppose it satisfies (2), so there is a k-embedding j : K → kp. But K is perfect and kp is purely
inseparable over k, so kp is also purely inseparable over any intermediate field, such as K. In other words,
the extension kp/K is purely inseparable, yet also separable since K is perfect. The only separable algebraic
extension that is purely inseparable is the trivial extension (why?), so it follows that j is an isomorphism. If
instead K/k satisfies (1) then by perfectness of K we get a k-embedding kp → K. Yet this map is a purely
inseparable extension (since K/k is purely inseparable) as well as separable (since it is an algebraic extension
of the field kp that is a perfect field), so once again it must be an isomorphism.

To prove the uniqueness results (for embeddings and isomorphisms over k), it suffices to handle the case
of embeddings. If j : K → L is a k-embedding then for each a ∈ K we have ap

n ∈ k for some n ≥ 0, so
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j(ap
n

) = ap
n

inside L. But j(ap
n

) = j(a)p
n

, so j(a) ∈ L has to be a pnth root of ap
n

when viewed in L via
k → L. By uniqueness of p-power roots in characteristic p, it follows that j(a) is uniquely determined. �

Example 2.2. Let k = k0(t) where k0 is perfect of characteristic p (e.g., a finite field of p-power size).
It is hopeless to describe k or ks, but kp is very easy to describe: it is

⋃
n≥0 k0(t1/p

n

). Indeed, for any

f =
∑
ait

i ∈ k0[t], we have ai = bp
n

i for some bi ∈ k0 since k0 is perfect, so f = hp
n

for h =
∑
bi(t

1/pn

)i.

Passing to ratios of polynomials, we see that k0(t1/p
n

) = k1/p
n

inside k. This gives the assertion. (Beware

that if we do not assume k0 to be perfect then we need to adjoin all k
1/pn

0 as well to get kp.)

Here is an amusing way to build up k from separable and purely inseparable parts:

Proposition 2.3. The natural map µ : ks ⊗k kp → k defined by a ⊗ b 7→ ab is an isomorphism. More
generally, if k′/k is a separable algebraic extension then k′ ⊗k kp is a field that is a perfect closure of k′.

Proof. The key is to show that K := k′ ⊗k kp is a field. Granting this, we can conclude as follows. Clearly
the field K is purely inseparable over k′ (since any finite sum of elementary tensors has a big p-power than
visibly lies in k′, depending on the elements of kp which appear in the elementary tensors), yet it is also a
perfect field since it is visibly an algebraic extension of the perfect field kp. This gives that K is a perfect
closure of k′ (in view of the properties which we have shown uniquely characterize the perfect closure).

When k′ = ks then K would be the perfect closure of a separably closed field, so K is both perfect and
separably closed (as any algebraic extension of a separably closed field is separably closed; why?), forcing
it to be algebraically closed. In other words, µ would be an algebraic extension map between algebraically
closed fields, so µ is indeed an isomorphism.

It remains to show that K is a field. Each element of K is a finite sum of elementary tensors, and so lies
in k′0 ⊗k kp for a finite separable extension k′0/k contained in ks. It suffices to show that each k′0 ⊗k kp is
a field. By the primitive element theorem, k′0 = k(a) = k[a] for some a separable over k, say with minimal
polynomial f . Then k′0 = k[x]/(f), so k′0 ⊗k kp = kp[x]/(f). Thus, it suffices to show that the separable
irreducible monic f ∈ k[x] remains irreducible over kp. Suppose there is a factorization f = f1f2 with each
fj ∈ kp[x] monic. We shall prove that fj ∈ k[x] for both j, so this is a trivial factorization. By monicity,
the coefficients of each fj are elementary symmetric functions in the roots of fj , which in turn are roots of
f , so each is separable over k! Yet these coefficients lie in the extension kp/k that is purely inseparable and
hence has no nontrivial separable subextensions over k. This forces the coefficients of f1 and f2 to both lie
in k, as desired. �

A more concrete way to think about the preceding proposition is this: if k′ is an extension of k inside k,
then the compositum k′kp formed inside k is the perfect closure of k′. Indeed, the natural map k′⊗k kp → k
was just shown to always be an isomorphism onto k′p, yet clearly the image as a field has to coincide with
k′kp. But this “compositum” viewpoint adapts to situations in which separability of k′ is dropped (so k′⊗kkp
generally fails to be a field):

Proposition 2.4. Let K/k be any algebraic extension inside k. The compositum Kkp is the perfect closure

of K inside k.

Proof. Certainly Kkp is perfect, since it is an algebraic extension of the perfect field kp. Yet it is purely
inseparable over K because every element of Kkp is a rational expression involving only finitely many
elements of kp. This expression is clearly carried into K when we apply a huge p-power (enough to bring
into k the finitely many elements of kp that arise). Hence, in view of the unique characterization of perfect
closures, we are done. �

Here is a companion result:

Proposition 2.5. If k′/k is a purely inseparable extension then ks⊗k k
′ is a field that is a separable closure

of k′. More generally, if k′/k is an arbitrary subfield of k over k then the compositum ksk
′ inside k is the

separable closure of k′ in k (so it is a separable closure of k′).
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Proof. The method of proof of Proposition 2.3 carries over to show that ks⊗k k
′ is a field (by replacing ks/k

with a finite subextension to which the primitive element theorem may be applied, and using that k′/k is
purely inseparable). Its image in k under the map a ⊗ b 7→ ab after choosing a k-embedding of k′ into k is
therefore a subfield of k that must be the compositum ksk

′. Hence, it suffices to show that for an arbitrary
extension k′/k inside k, the compositum ksk

′ coincides with the separable closure k′s of k′ in k.
Since k ⊆ k′, certainly all elements of k separable over k are separable over k′. This forces ks ⊆ k′s, so

ksk
′ ⊆ k′s. Clearly ksk

′ is a separable algebraic extension of k′ (since ks/k is separable algebraic), and it
sits between k′ and k′s, so to conclude equality with k′s we just need to check that ksk

′ is separably closed.
But ksk

′ is an algebraic extension of the separably closed field ks, so it must be separably closed (as k is
a common algebraic closure of everything in sight and it is purely inseparable over ks, hence also purely
inseparable over the extension ksk

′ of ks). �

We conclude with a nifty interpretation of the separable and inseparable degrees via composites with
perfect and separable closures, from which the multiplicativity of separable and inseparable degrees can be
seen in another way (as a special case of ordinary multiplicativity of field degrees). Briefly, the idea is that
forming the compositum with kp eats up all of the inseparable data and leaves behind only the separable
degree, whereas forming the compositum with ks eats up the separable part and only leaves behind the
inseparable degree.

Theorem 2.6. For L/k an arbitrary finite extension inside k, we have

[L : k]s = [Lp : kp] = [Lkp : kp], [L : k]i = [Ls : ks] = [Lks : ks].

Proof. The second equality in both cases comes from our descriptions of separable and perfect closures as
composite fields above. Thus, it suffices to prove the equality of first and third terms in both cases.

We express L/k as a tower L/k′/k where k′/k is separable and L/k′ is purely inseparable. Thus, we have
a tower kpL/kpk

′/kp. Since Lkp/kpk
′ is a purely inseparable extension (as L/k′ is purely inseparable) and

the field kpk
′ is perfect (being algebraic over the perfect field kp), we conclude that the extension Lkp/k

′kp
is trivial (i.e., degree 1)! Thus, [Lkp : kp] = [k′kp : k]. But by definition [L : k]s = [k′ : k]. Hence, by
renaming k′ as L we may reduce to the case in which L/k is a separable extension (so all subextensions over
k are also separable). In this case, we wish to prove [L : k] = [kpL : kp]. But this is clear, since we have seen
earlier that for separable L/k,

kpL = Lkp ' L⊗k kp,

and the right side clearly has kp-dimension equal to [L : k].
Next we show that [L : k]i = [Lks : ks]. Once again using k′, by definition [L : k]i = [L : k′] yet ks = k′s

since k′ ⊂ ks (as k′/k is separable inside k). Thus, we can replace k with k′ to reduce to the case that L/k
is purely inseparable. Then our tensor product computations give that Lks = L ⊗k ks, which visibly has
ks-dimension equal to [L : k]. �


