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Tntroduction. We shall first review the topic of algebraic geometry from
Introaucs ==

.-,.'_.1*‘ s naive beginnings to the curious and outlandish fashion in which it is tréated

~ powadsys.

In the elements of calculus a plane curve is defined as the set of poimts

v

‘Jﬁsg (x,Y) which satisfy the equation P(x,y).= O, vhere P is a polynomiel with
coefficients in the-real field R . Similarly & surface in 3-space is the set

of points (x,y,z) vhich satisfy the equation P(x,y,2z) = O, vere P € R [X,Y,Z].

~ fhere exist, however, curves which according to this definition have no points-

st all, like for instance x> +y% +1=0. The mathemsticians. of the 18R centu-

N l; ! \
ry thought to eliminate this incbnvenience by 1ntroducing imaginary points of

the curve, i.e. points (x,y)e€ €2 wnich satisfy P(x,y) = 0. They created hereby

ko= ':N-a great confusion since considering complex points of curves defined by equations
AT '_‘.':mith real coefficients they mixed up two cpmpletely different problems. We now
.i_ﬂij.now that the right thing to do is to consider a field K, an equation P(x,y) =0
f-f vhere P is & polynomial with coefficients in K and to look for solutions
! (_x,y) € 1(2 . The curves defiped over different fields are to be considered as
different curves, even if their equations have the same form.

What is the reason for considering sn arbitrary field K instead of just the
. tields R and C 7 A great number of prdblems have ¢onduced to arbitrary fields,
. ‘-‘QSPecmlly since the year 19%0. Thus Fermat's last théorem states that the sur-

n n n

face x" + y® + 2 = 0 (n > 3) has no points over the field @ of rationsl numbers.

:The situstion is similar for all diophantine equations. An important method in
the theory of these equations is the reduction medulo p, where p is & prime
.Dumber. Thus in the case of Fermat's last theorem we ask whether the congruence

xn+yn+ 2"=0 (mod p)
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p8s 8 soiution in integers, which is the same thing as to ask for solutions of
the equation 2+ y* + 2 = 0 over the finite field ﬂi;== Z /(p). We can also
consider congruences modulo pk, i.e. solutions in ZZ/(pk) which is not a field

any mOTe but a ring. Finally we can ask for solutioms which satisfy the con«

| gruences mod. pk for every strictly positive integer k; which is the same as

¥ asking for solutions of x° + yn_+ 2P = 0 in the ring of p-adic integers le

£ = 1im ZZ/(pk) = the projecfive 1imit of the rings ZZ/(pk). Hence we are led
' & .

; to consider the field @Q:p of p-adic numbers.

The method of algebraic geometry over finite fields with chayacteristic P

ijs very powerful. Thus after André Weil proved the Riemann conjecture for alge-

— S Ay

braic curves, he has obtained e number of immediate corollaries concerning
diophantine equations which heve never been proved before. For instance he

obtained the inequality

ond

P+ )

o
N

c VP

=
The best estimste known before was O(p") with 1/2 < @ <'IL.
Thus we are led to pons;der aﬁ arbitrary field'K and points of K® which
“satisfy a certain family of polynomial eguations Pa(xl""’xn) =0 (a € 1) with

coefficients in K. The set V of all such points form a so-called gecmetric or

e e

affine variety. The first remark to be made is that while the polynomials Pa

W=

determine the variety V, conversely the variety in no wey determines the system

e

Pa since the points of V satisfy all equations of the form Z.RaPa = 0. This
was noticed at @ very early stage since alreedy in three-dimensional space a
curve can be defined be infinitely meny different systems of equatioms. Thus wé

are led to consider, instead of systems of polynomial equetions, ideals in the

AN I

Polynomial ring. Given an ideal ®@ in K [xl,, . ,xn] let V(m ) be the set of all

R ==

Points (xl,...,xn)ei K* which satisfy the equation P(xl,...,xn) = 0 for every

PE ¢ . Conversely let A be eny set in Kp and consider the set I(A) of all

- T ————erET— e S P ST
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pomcm{agls P such that P(xlp“.,xn) = 0 for all (xl,“ .yxn) € A. The set I(A)
i cleerly an ideal and thus we have associated ideals and varileties to each
other. This association is;, however, not very satisfactory. Indeed, If we start
out with an ideal @& , then u C I(V(er)), but in general w £ I(V(wt)).

The situation is slightly better if the field K is algebraically closed,
for in this case we have Hilbert's mullstellensats: if the ideal vt is not the
whole ring K [Xl,. . ,an, then there exists a péin‘t X = (xl,. . ,xn) € K® such
thot x € ¥(w), 1.e. V(u) £4. From ﬁere we can deduce using the classical
trick of Rabinowitsch that

r(v(o)) = » (), _

vhere ¥ {(t) is the root of L, i.e. the set of all pclynomials such that some
power belongs to tt. Proof. Clearly # (#) C I(‘V(UL)‘).‘ Cohversely, let

£ € I(V(t)) end let T be a new indeterminate. Ilet us consider the ideal B
in the ring X [Xl,. . ’Xn’ T] generated by 1 - T f(‘Xl,.., ,Xn) and all the poly-~
nomials Q(Xl,. . 8 ,xn) €Y . These polynomials have no comimon root, since 1if
X = (xl,. o ,xn) is & root of all polynomials Q € ¥t , then I'by our'. assumption
f(xl,...,xn) =0e&nd 1 -T f‘(_xl,. ..,xn) = 1. Hence by the nullstellensatz the

“ 1deal ¥ 1is the whole ring K [le. X T| and thus 1 is & linear combination

of the form
1= g(T,%,.. X)L - T £(Xy,..,X ) + Z;; gy (T Xy X )Q Xy ee 5K, )
Setting T = sre—r—s—7 we Obtain en identity in the field K(X ,...,X ):
120 ,Xn 1 n
1 .
| 1= Zi: gi(:ﬂ}_{l""’xn) , xl,...,xn) e S S
| .

l. Multiplying by the highest power of f(Xl,, oo an) which occurs in the denominators
| on the rignt hand side we obtain an identity

et = ; h, (%) ¢, (%)

vhich proves that f/ue 0, i.e. £€ 1 (o).

! .
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It can be seen in particular that ¢t is e prime ideal if amdlomly if v(w)
is 1rre&ucible. Since in this case ¢t = # (9 ), the correspondence between ¢ and
and V is biaective: Thus in the hands of Hilbert and his followers (E. Noether,

W Krull, B.L. van der Waerden) algebraic geometry has become the study of poly-
nomial ideals. This school has flourished from 1920 to the publication of Weil's
Foundations in 1947 and its results cen be found in the books of van der Wzerden
(Einfiihrung in die algebraische Geometrie, 1939) and Grdbner (Moderme algebraische
Geometrie, 1949).

However, the situation is still not satisfactory. The main objection is that
what the theory really studies is not the algebraic variety itself but the alge-
braic variety immersed in & certain space. Thus a circle if considered in the
plane is defined by the ideal ¢t generated by X2 + ¥ - 11n K[X,Y]. However,
the same circle, if considered in 3-space, 1s defined by the ideal generated by
the polynomials X2 + Y - 1 eand Z in K[X,Y,Z]. The soiﬂ'.ut-ion‘\to this dilemme has
been seen slready by Riemann end it comsists in considering the quotient ring -
A= K[Xl,...,Xﬁl/ﬂl; in the gbove two examples the two rings obtained in this way
are isomorphic. The elements of the ring A are polynomials computed mod 1, i.e.

] two polynomials P

1
function on V. Thus the ring A can be thought of as the ring of functions on

and P2 define the same elements of A if they define the same

the variety V.

Riemann expressed himself, of course, in a different language. He com-
sidered & rational function f(x,y) and for every fixed x the roots yl(x),...,
Yh(x) of the equation f£(x,y) = 0. The value of a retional function at & point
(x,y,) 18 then given by %%%.. The trouble with this languege is that the
Yi(x) are multiple valued functions, i.e. no functions at all. One really haé to
Work with the integral ring K[Xl,. - ,Xn-[ / é’ P y prime, and its quotient field.

later Dedekind and Weber translated Riemsnn's theory into algebraic language

(Journ, fitr Reine Angew. Math., 92 (1882) pp. 181-290).
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Tq:;us we are led to assoclate with every variety V a ringcf finite type
i = K[xl,. . ,Xn'_l/u , where, for the sake of simplicity, we assume that the
pield K is algebraically closed. Our pro‘biem is to establieh a one-to-one

correspondence between algebraic and geometric objects. Given a point ze€V, we

assoclate with it the set of all functions on V which vanish at z; this set is

' I a @ximal ideal in A. A subvariety W of V 1s defined by an ideal ; which
contains 7t . The set of all functions on V which vanlsh on W forms an ideal in
A. We associate this ideal with the subvariety W. |

, : In the opposite direction, given an algebmic&lljr closed fleld X and a ring
: of finite type A = K[Xl,. o ,.Xn']/l)l, we want to assoclate with it a variety V.

' 8 By what precedes, it 1s natural to consider as the points of V the elements of
5' ! the meximal spectrum Specm(A) of A, i.e. the maximsl ideals of A. ~ This, how-
k- : ever, will certainly not give a one-to-one correspondence between algebraic and
: geometric objects, since to any field K there would correspond the variety con-
| sisting of one point. A way to correct this situation is again suggested by
‘ Riemann's approach who considered the rings A.z formed by the functions on V¥

which Have no.poles at z. Thus we should take as elements of the geometric

1- : object we want to associate with the ring A, the pairs (#,A, ), where m is a
| maximgl idesl of A and A -~ is the 10ca.1 ring at #. In this wuy for different
! fields we obtain different pairs (z,K). ‘

The situation is still not satisfactory, since there exist non-1somorphiec

i =

rings such thet the corresponding sets of pairs (#, Am) are the same. For
example if we take for varieties over € the hyperbola Vl defined by the equa-

| tion xy

1 and the parabola V2 defined by y = x2, then the correspdncling ringe

. are A= C(XY/(XY - 1) end A, =C [x,Yj/(x2 - ¥). Wow A, is isomorphic f;
' to € [X,X-l] » A, is isomorphic to L [X] and the last two rings are not 150 -

morphic since in the second one the sum of invertible elements 1s an invertible
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elcmentror zero and in the first one this is not true. Howevex;, it is easy to
gee that for either ring the local ring at a mximnj. ideal is isomorphic teo
) | (€ [ gy = the: local ring of C [X] at the meximal idesl (X).

The way out of this dilemma is to glue together the pairs (m ’Am) in 8
gensible ;va.y instead of considering them as & discrete collection of objects.
This can be done using leray's theory of sheaves. First we define & topology
on the set Specm(A), the so-called Zariski topology. (Ohserve that in the case
of the real or complex field, we have on the variety the topology induced by

R Dor ¢ n, but this cannot be generalized to an erbitrary field K.) Given ean

§  ideal # in A wve set V(%) = the set of all meximal ideals which contain %

3 ’:»'?! and we take for the closed sets of the Zariski topology the sets W) 1In

ﬁ‘-?’ other words, the closed sets of V = Specm(A) are the subvarieties of V. ' The
e . .",.'.LI;_"

"j?': Zariski topology is very coarse, it is T, (Fréchet) but never T, (Hausdorf?).
& Now we want to construct on Specm(A) a sheaf whose stalk at the point M 1s A, .

. "Hl We take for & besis of the open sets in V the sets of the form D(f) = {m I'e ‘¢1#},

‘ vhere fEA. The sete D(f) can also be interpreted in amother way. Write now
x for an arbitrary element of V = Specm(A) and denote by f(x) the class of

" £€ A modulo the maximal ideal ’“’x corresponding to x. In particular £(x) =0

if and only if f€ 'mx. (“I'his corresponds to the fact that if A is the riﬁg of
functions on the variety VI, then with each point x € V we assoclate the maximal
1deal of A formed by the functions which vanish &t x.) Then we can also write
D(f) = {xj'f(x) £ 0}. We obtain a presheaf of rings % on Specm{A) if we attach
to every open set D(f) the ring [ (D(f), 1) = Ag ={-1;=5 | X € A, n‘?-;>,".0}
(Grdthendieck, Elémém;s_, OI”l'ETB)' Intuitively A, is the set of functions

. vhich have poles &t most on the set v(f) = {x!f(x) = O} vhere f vanighes, i.e.

’. Which are regular on D(f). The restriction maps for ¥ are readily defined and . -

0 the exioms of sheaves are easily checked. Thus we have attached to the ring A

l o748
& geometric object, rumely the ringed space (V, A). It is easy to see that A,
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1 the inductive"limit of the rings A_, where f ¢4Mr. Finally A is isomorphic
o /"(V,ﬁ) and thus ﬁhe correspondence between rings A and ringed spaces (v, %)
1s one=to-one.

We have now obtained a satisfactory solution to our problem in the case
of affine geometry. However, already the geometers of the 18th century have
realized that affine geometry does not reflect correctly the intgitive geometric
picture. Thus simllar objects, like conic sections, look completely different
and Bezout's theorem, according to whiph a curve of degree m and a curve of
degree n have mn points of intersectién if counted with their multiplicities,
does not hold (e.g. & line and e conic). Early in the 19%h cemtury projective
gpace was introduced and there general theorems (e.g. Bezout's theorem, at least
over an algebraically closed field) were found to be true. Consequently in the
ensulng period mostly projective algebraic geometry was developed. Consider
fhe n-dimensional projective space ')n(K) over the field K which ig defined as
the gquotient set'Kp+lﬁA vhere A is the equivalence relation in K yhose equi-
valence classes are lines going through the origin. The varieties in Pn(K)
correspond to cones in Kp+l, i.e. are defined by e system of equations
1 Pa(xo’xl""’xn) =0 (x€ I), where the polynomials P, are homogeneous. The
first trouble arises if, following the pattern set by the affine case, we want
to define the functions on the variety V as equivalence classes of polynomials,
since all such functions turn out to be constants. Once more it was Riemsnn
who circumvented this difficulty. Instead of considering functions which are
regular on the whole variety, he allowed poles, i.e. considered rational

functions. Two such rational functions

Qe ys- -1 %y)

R(xo,xl,...,xn)

Q‘(xo,xl,...,xn)

R’ (xof xl’ LR | xr;)

and

were considered to be equal if QR' - RQ' belonged to the homogeneous ideal




generatéd by the polynomials Pa' It turns out that these rational functions
form & field with a regsongble degree of transcendence. Something is lost how-
ever: isomorphic flelds can correspond to differemt varleties, as in the case
of rational (unicursal) curves.

This method of attack has given rise to birationel geometry, which dis-
regards the finer geometric properties of the objects under study but has given
a great number of interesting results in the hands of German, French and Italian
geometers. Birational invariants were discovered, the first of them by Riemsnn
himself, numely the genus of & curve. ‘

To go Beyond this stage it is necessary to comsider projective space in Q
different way. In fact ﬁjn(K) can be obtained by gluing together affiné spaces.

Let Hi be the hyperplene defined by x, = O (0 <1< n), then Ei = [}Hi is iso-

i
morphic to K, the isomorphism being defined by
X x p i '
0 i-1  *4) *n
(xo,xl,,..,x_i,..,,xn)+(;i—,..., x5 '--J-E;m,..., x_j:) The set EinEj is
an open variety in both E, and EJ. Thus to obtain EDn(K).we have to take n + 1

affine spaces E,, in each of these certain subvarieties H (3 #1) and identi-

i’
C.Ei with H

13

fy H i(: E This procedure hes beén used before in algebraic

ij J oA
"topoIogy and to define differentiable or analytic menifolds, but the idea to

use it in algebraic geometry is due to André Weil. Once in possession of this
1dea Weil introduced sbelisn varieties (which turned out much lster to be pro-
jective varieties) aund could prove the Riemsnn hypothesis for algebraic curves
over finite fields. To define his abstract varieties Well considers & system

Va of algebraic varieties sud for each pair Va, V, subvarieties Wa

B B

wBa‘:'vB’ such that WaB and Waa are isomorphic. The abstract variety is then

cbtained by identifying WHB and WBa' Weil could extend to these varieties all

“the results known for affine and projective varieties. However, the detailed

CZVa and

construction of the abstract varieties 1s an extremely long, tedious, and

Cumbersome process.

I S
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Just as in the case of differentisble end amnzlytic manifolds, the simpli-
fication was achieved by the use of sheaves. A differentiable menifold can be
defined as a ringed space (V, £) in vhich every point x € V has & neighhorhood
U such that #|U is isomérphic to the sheaf of all differentiable functions on
an open set of R®. This definition has the advantage to be intrinsic and can
easlily be seen to be equivslent to the old one with atleses. In 1955 J.P. Serre
has turned his attention from complex analytic manifolds and analytic spaces to
algebralc geometry and found that the same definition can be given here
(Faisceaux algébriques cohérents, énnals\of Math. 61 (1955) pp. 197-278). Thus
an algebraic variety is a ringed space which is locally isomorphic to the ringed
space of an affine variety. This definition was finally modified by Grothendieck
in two points.

In the first place Serre still only considered rings of finite type
A= K[Xl,...,xn:]/tm (Weil even took % prime, i.e. his varieties were irre-
ducible). Grothendieck (end independently Cartier) had the idea to consider &
complétely arbitrary commutative ring A with unit element.

Another point still caused some difficulty. With a ring A we associated

" & ringed space (V,A) and it 1s desirable that this ¢orrespondence be a functor
from the category of rings into the category of ringed spaces. A_morphiém '

4

Y : (V,0) » (V', ©') of ringed spaces is a pair V= (7},5), where

VJ : V>V' is @ continuous mep and O: @' > 7 is a (’1/~=_mozfph:|7_sm (Grothen-
dieck, Eléments, Op,k.1.1). 1If ¢ : A+ Bis a homomorphiem of rings (trans-
] forming, as always, the unit elemenf of A into the unit element of B), them the
only sensible way to define ?/: W = Specm(B) + V = Specm(A) is as folloﬁé:
r. take #€ Specm(B), i.e. let #4 be e maximal ideal in B sud consider = 7”1'(4¢).
. It turns out, however, that ?rl(it) is not neceésarily a maximal ideal of A at

all. Thus 1f 1 : Z + () is the canonical imbedding, (0) is & maximal ideal in

Q, but 1 (0) = (0) 1s not & maximel ideal in Z.
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in this way the maximal spectrum Specm(A) had to be replaced by the prime
gpectrum Spec(A) and now Iz A + B defines a map P Spec(B) ~ Spec{A) since
1 ég is a prime ideal in B, then so’l(f) is a prime ideal in A. The intuitive
picture is samewhat more confusing since maximal ideals correspond to points,
vhereas we 1include also all irreducible subvarieties, which correspond to
prime ideals. It is clear that for each éee Spec(A) we have a homomorphi sm
% 3 Af - B}q which together define a lluwmorphism A ’ﬁ of sheaves of rings.
Thus A »~»{Spec(A), K) 1s indeed a functor as desired (Grothendieck, Eléments,
1,1.6.1).

Interpretation of some notions of classical algebraic geometry in the

language of schemata. As we have mentioned before, the points of & preschems

(X, @x) are not only the points of the variety V corresponding to it but also
all irreducible subvarietles of V. The points of X which correspond to poinfé
of V are the closed points x of X, i.e. such that {x} = -{x—} . In the case of
an affine schema Spec(A) the closed points x correspond to maximal ideals /x

of A (Grothendieck, ,Ele’me;nts, I1,1.1.7). The variety in the sense of Serre is -
the subspace formed by all closed points with the topology induced on it by X.

To an irreducible subvariety of the affine variety V there corresponds a

prime ideal ¢t of A and thus an irreducible closed set V(% ) of X = Spec(A)
(Grothendieck, Eléments , I,1.1.14). Each irreducible closed set F in X has a
unique generic point x such that F = {x} , nsumely the point x = ]x = J (F)
(1vid.). A1l points y € m are speclalizations of x, 1i.e. jxcjy or, in
other words, the irreducible subvariety Wy corresponding to Jy is a subvariety
of Wx. This notion of generlc point is completely differemt from that of

Andre weil.

Next we consider the notion of dimension.' ILet E be a topological space.

We consider increasing chains Fo C Fl c...C Fk of length k of irreducible,
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nons-emﬁty; closed sets in E. The dimension of E is by definition the musximal
1ength of all such chains (Godement, Théorie des faiscesux, II.4.15, p.198).
mhis definition corresponds to the intuitive idea of dimension in an algebraic
varietyo Thus for instance in a three dimensional variety we hsve maxiwms]
chains consisting of a point, & curve through the point, a surface through the
curve end finally the space itself. If the space is an affine scheme, then
each irreducible closed set Fi has a unique generic point Xy hence the chain
can be written -f;j C ﬁ;j- @ xons [@ T:T.;T and to this there correspconds a chain
of prime ideals fo ) fl >... ka in A. Irreducible components of the
variety correspond to minimal prime ideals of A (cf. Grothendieck, Elduents 5
I,i. 1.14). CGiven sn irreducible variety W corresponding to a prime ideal %
of A, the dimension of 'W is the length of the maximal chain y= fk C fkd
c... C fo of strictly increasing prime ideals of A.

This leads to the definition of the (Krull) dimension of a ring A as the
largest number k such: that there exists a strictly increasing ¢hain of prime
ideals j( 0 C flc 2. i fk of A (Samuel, Progrés récents d'algébre locale,
II1.2, p.66). We can now speak of the dimenS'llon of the local ring @x = Af
at % . At a gemeric point x the dimensibn is zero, since Af has only one prime
ideal, namely the nilredical. If X = Spec (A) is irreducible and A is an integral
ring, then et & generic point x the local ring 0){ is a field, nemely the field
of fractions of A (Grothendieck, Eléments, I,7.1.5). Corresponding to a maximal
chain fo C fl S— ka of prime ideals of A we have a sequence of local

rings Aéeo, A%l"“’A?k’ where diml = @), dimﬁfl = Ly oxawn s dimﬁ.a@k = k,

o
 Analyzing the classical definition of a-simp'le point of & variety (Zariski,

The concept of a simple point of sn sbstract algebraic variety, Trans. Amer.
Math. Soc. 62 (1947) pp. 1-52, or lang, Introduction to algebraic geometry,
Chap. VIII) one is led to say that x € X is simple if @x is a regular local

ring. TIet us recall the definition of these rings. Let A be a noetherian local
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ring aﬁé<%4 its makximpl ideal. Let n be the minimal number of generators of #s
and 4 the dimension of A. In general d < n, if 4 = n we say that & 1z a regu-
i1ar local ring. Observe that n is also the dimension of the vector space ¢w/ﬁne
over the fleld A/ﬁn . This follows frowm Nakayama's lemms, which states the
following: let A be a not necessarily commutative ring, 47 the radical of A,

M a medule of finite type over A. If N is a submodule of M such that M

=N +#&M, then M = N (Bourbeki, Alg., Chap.VIII, & 6, n® 3, cor. 2 of prop. 6).

e =

To prove the assertion, let xl,,..,xh.E-Mi be such that thelr classes xl,.cn,xn

[n]
modulo M¢2 generate wfm ©, then we have to show that x L generates .

1
Set #=Ax, + ... + Ax, then #C# sud w= # +m°. Since m is the
vadical of A, we obtain by Nekaysma's lemws that #i= 7% .

Intuitively, if A is the ring of functioﬁs vegular at a point x of & va-
riety'énd # is its maximal ideal consisting of the functions which vanish at
X, then :M$2 is the ideal comsisting of those functions whose development starts
with quadratic terms and the elements of 1%/4%/2 are the equivalence classes of
functions with the same,lineaf terms and no comstant terms. The~fact that.A is
a reguler local ring means that the dimension of the vector space spanned by
the gradients at x of the functions vanishing at, x equals the dimension of the
variety.

To see an example of & non-simple point, consider the curve x = tg, v o= t3,
vhich has & cusp at the origin (0,0). The polynomial ring K[X,¥] has dimension
two, however, this fact is not so trivial as one might think {Semuel, Progres
récents d'algébre locale, TIT.3, Th. 8, p. 83). TIndeed, Magsts has given an
example of & non-noetherien ring R of dimension 1 such thet R[X] has dimension
three. The ring A = K[X,Y:]/(Y2 - X°) hss dimension 1, and the maximel ideel
(X) + (Y)/(Y2 - XB) of the functions vanishing at the origin can be generated

by two elements but not by one.




