Extensions and $H^2(G, A)$

To say that a group E is an extension of group G by group A means there is an exact sequence as in the top row of the diagram below. Two extensions are equivalent if there is an isomorphism ϕ so that the diagram commutes.

\[
\begin{array}{cccccc}
1 & \rightarrow & A & \rightarrow & E & \rightarrow & G & \rightarrow & 1 \\
\| & & \downarrow \phi & & \| & & \\
1 & \rightarrow & A & \rightarrow & E' & \rightarrow & G & \rightarrow & 1 \\
\end{array}
\]

Assume A is abelian. An extension produces a G-module structure on A, by $\hat{x}a = \hat{x}a\hat{x}^{-1}$, where $\hat{x} \in E$ is any lifting of $x \in G$. The conjugation is well-defined because A is abelian and the only other \hat{x}'s would be $b\hat{x}$ with $b \in A$. Equivalent extensions induce the same actions, since a map ϕ defining an equivalence is assumed to satisfy $\phi|_A = Id$, and it is assumed ϕ induces the identity on G.

(When A is not abelian, all you get out of this is a homomorphism $G \rightarrow Out(A)$, the outer automorphism group of A, rather than a G-action $G \rightarrow Aut(A)$).

Even with the action or outer action of G on A fixed, classifying extensions up to equivalence is rather far from classifying all such E up to isomorphism of groups. An isomorphism could discombobulate the A's and may not give rise to any map at all between exact sequences. Nonetheless, classifying extensions is considered important.

THEOREM: Equivalence classes of extensions of G by an abelian group A, inducing a fixed G-module structure on A, are in bijective correspondence with elements of the cohomology group $H^2(G, A)$.

We will leisurely prove this theorem in the next couple of pages.

Choose a set $\{f(x) \in E \mid x \in G\}$ of inverse images of all elements of G. All elements of E can be uniquely written $af(x)$, for some $a \in A, x \in G$. One could allow $f(1) \neq 1 \in A$, but the formulas below then get a bit ugly. Therefore, by a set of representatives we will always mean such an f with $f(1) = 1$. Note $^*b = f(x)b(f(x))^{-1}$ doesn’t depend on the choice of f. Note f is a group homomorphism splitting of the extension sequence if and only if $f(x)f(y)f(xy)^{-1} = 1$ for all $x, y \in G$.

Let’s compute general products in E,

\[(af(x))(bf(y)) = a(^*b)(f(x)f(y)f(xy)^{-1})f(xy).\]

The function $u_f(x, y) = f(x)f(y)f(xy)^{-1} \in A$ looks important. The product formula shows that the group structure on E is determined by the G-module structure on A and the function u_f, since if we identify E setwise with $A \times G$ via $af(x) \leftrightarrow (a, x)$, we can write

\[(a, x)(b, y) \leftrightarrow (af(x))(bf(y)) = a(^*b)u_f(x, y)f(xy) \leftrightarrow (a(^*b)u_f(x, y), xy).\]

Moreover, if $\phi : E \rightarrow E'$ is an isomorphism of extensions, then $\{\phi f(x)\}$ is a set of representatives for G in E'. Since $\phi|_A = Id$, it follows that $u_f = u_{\phi f}$.
Recall that a function \(u : G \times G \to A \) determines a cocycle in \(Z^2(G, A) \), for the free standard \(\mathbb{Z}[G] \)-module resolution of \(\mathbb{Z} \), if one has
\[
ud_3(x, y, z) = xu(y, z) - u(xy, z) + u(x, yz) - u(x, y) = 0 \in A.
\]
Except we are writing \(A \) as an abelian multiplicative group here. It is much more convenient to write the cocycle condition as
\[
xu(y, z)u(x, yz) = u(x, y)u(xy, z).
\]

Exercise 1. Given a group \(G \), more convenient to write the cocycle condition as

\[
E_a(x, y, z) = xu(y, z) - u(xy, z) + u(x, yz) - u(x, y) = 0 \in A.
\]

Recall that a function \(u : G \times G \to A \) determines a cocycle in \(Z^2(G, A) \), for the free standard \(\mathbb{Z}[G] \)-module resolution of \(\mathbb{Z} \), if one has
\[
ud_3(x, y, z) = xu(y, z) - u(xy, z) + u(x, yz) - u(x, y) = 0 \in A.
\]

At this point, if we have an extension \(1 \to A \to E \to G \to 1 \) and a set of representatives \(\{f(x)\} \subset E \), then since \(E \) is associative we have a cocycle \(u_f(x, y) = f(x)f(y)f(xy)^{-1} \in A \). Clearly \(u_f(1, 1) = 1 \), since \(f(1) = 1 \).

Because of the explicit product formulas, we see that the extensions \(E \) and \(E_{u_f} = A \times_{u_f} G \) are equivalent, via the isomorphism \(\phi(a f(x)) = (a, x) \). Note \(\phi(a) = (a, 1) = i(a) \in E_u \). The set of representatives \(\{f(x)\} \subset E \) maps to the set of representatives \(\{(1, x)\} \subset E_{u_f} \).

We have worked with (certain) 2-cocycles, now we bring in (certain) 2-coboundaries. Beginning with an extension \(E \) and a set of representatives \(\{f(x)\} \), what are other possible sets of representatives? Obviously just sets \(\{b(x)f(x)\} \), where \(b : G \to A \) is any function with \(b(1) = 1 \). In the standard resolution, \(b \) extends to a \(G \)-map \(F_1 \to A \), with coboundary \(\delta(b) : F_2 \to A \) determined by
\[
\delta(b)(x, y) = bd(x, y) = xb(y) - b(xy) + b(x),
\]
in additive notation. Multiplicatively this can be written
\[
\delta(b)(x, y) = xb(y)b(xy)^{-1}.
\]

Note that \(b(1) = 1 \) implies \(\delta(b)(1, 1) = b(1) = 1 \).
Exercise 4. Show that \(u(bf)(x, y) = \delta(b)u_f(x, y) \). [Hint: \(f(x)b(y) = \ast b(y)f(x) \).]

(Nota that an immediate consequence of Exercise 4 is that the cocycles with \(b \) and \(bf \) determine the same cocycle, \(u_f = u_{bf} \), if and only if \(b \in Z^1(G, A) \), the 1-cocycles, which is exactly the condition that \(b(x) = (b(x), x) \) defines a group homomorphism section of the semidirect product \(A \times_v G \to G \). But this is peripheral to our present discussion.)

Exercise 4 is easy, but has serious consequences. Beginning with an extension \(E \), choose a set of representatives \(f \) and construct the cocycle \(u_f \). Exercise 4 shows that the cohomology class \([u_f] \in H^2(G, A)\) is independent of the choice of set of representatives. So we can call this class \([u(E)] \in H^2(G, A)\). We also observed above that if \(\phi : E \to E' \) is an isomorphism of extensions then \(u_f = u_{\phi f} \), hence \([u(E)] = [u(E')]\). So we have a well-defined map from equivalence classes of extensions (inducing a given \(G \)-module structure on \(A \)) to \(H^2(G, A) \).

We want to prove this correspondence is bijective. But here we must pay a little price for our decision to only consider cocycles \(u \) with \(u(1, 1) = 1 \) and coboundaries \(db \) with \(b(1) = 1 \). Here, the arguments \((1, 1)\) and \((1)\) refer to basis elements in \(F_2 \) and \(F_1 \) of the standard resolution, and \(1 \in A \) is the identity.

We have \(H^2(G, A) = \frac{Z^2(G, A)}{B^2(G, A)} \), cocycles mod coboundaries. We now go back to additive notation in a general abelian \(G \)-module \(A \). Let \(Z^2_0(G, A) \subset Z^2(G, A) \) denote those cocycles with \(u(1, 1) = 0 \) and let \(B^2_0(G, A) \subset B^2(G, A) \) denote cocycles mod coboundaries \(db \), where \(b(1) = 0 \). We will prove the following claim after finishing the proof of the THEOREM.

CLAIM: \(\frac{Z^2_0(G, A)}{B^2_0(G, A)} \to \frac{Z^2(G, A)}{B^2(G, A)} \) is an isomorphism.

In Exercises 1 and 2, beginning with any cocycle \(u \) with \(u(1, 1) = 1 \), we constructed an extension \(E_u = A \times_v u G \). In Exercise 3 it was verified that \(E_u \) induces the given \(G \)-module structure \(v \) on \(A \), and also that \(u_f = u \) for the natural factor set \(\{f(x)\} = \{(1, x)\} \subset E_u \). Thus, by the claim, the map from equivalence classes of extensions to \(H^2(G, A) \) is surjective. But we also conclude the map is injective. If extension \(E \) yields cocycle \(u \) with one choice of representatives \(f \), then \(E \) and \(E_u \) are equivalent. But replacing \(f \) by \(bf \), where \(b(1) = 1 \), doesn’t change \(E \), and now we see by Exercise 4 that \(E \) is equivalent to \(E_{\phi(b)u} \). In other words, again by the claim, the association \(u \mapsto E_u \) determines a well-defined map from \(H^2(G, A) \) to equivalence classes of extensions, inverse to the association \(E \mapsto [u(E)] \). This proves the THEOREM.

PROOF OF CLAIM: Given any cocycle \(v \in Z^2 \) and a 1-cochain \(c \), note

\[(v + \delta c)(1, 1) = v(1, 1) + cd(1, 1) = v(1, 1) + c(1),\]

since \(d(1, 1) = (1) \) in the standard resolution. But \(c(1) \) is arbitrary, so we can change any cocycle by a coboundary and get \(v + \delta c \in Z^2_0 \). This proves the map in the claim is surjective. But also, if \(u \in Z^2_0 \) and if \(u = \delta b \) then \(0 = u(1, 1) = \delta b(1, 1) = bd(1, 1) = b(1) \), which proves \(b \in B^2_0 \), hence the map in the claim is injective.