Math 210A. Homework 8

1. Read the handout on tensor algebras, highlights of which were discussed in class.
2. Let $R=k[X, Y]$ for a field k, and let $I=(X, Y)$. View k as an R-module via $k=R / I$.
(i) Prove that there is a unique R-linear map $I \otimes_{R} I \rightarrow k$ satisfying $f \otimes g \mapsto\left(\partial_{X} f\right)(0,0) \cdot\left(\partial_{Y} g\right)(0,0)$, and deduce that $X \otimes Y \neq Y \otimes X$ in $I \otimes_{R} I$.
(ii) As an application, show that the natural map $I \otimes_{R} I \rightarrow R \otimes_{R} R \simeq R$ is not injective. So the inclusion $I \rightarrow R$ considered twice is an example of a pair of injective linear maps T and T^{\prime} between torsion-free modules such that $T \otimes T^{\prime}$ is not injective.
3. Let R be a commutative ring, and M_{1}, \ldots, M_{n} be finite free R-modules. Construct and uniquely characterize (via elementary tensors) a linear isomorphism

$$
M_{1}^{\vee} \otimes \cdots \otimes M_{n}^{\vee} \simeq\left(M_{1} \otimes \cdots \otimes M_{n}\right)^{\vee}
$$

recovering the one from class for $n=2$, and discuss its naturality in M_{1}, \ldots, M_{n} (draw and justify a commutative diagram).
4. Let M_{1}, M_{2}, M_{3} be finite free modules over a commutative ring R.
(i) Formulate and prove a naturality property for the isomorphism $M_{2} \otimes M_{1}^{\vee} \simeq \operatorname{Hom}\left(M_{1}, M_{2}\right)$.
(ii) Prove that the composite isomorphism

$$
\operatorname{Hom}\left(M_{1} \otimes M_{2}, M_{3}\right) \simeq \operatorname{Hom}\left(M_{1}, \operatorname{Hom}\left(M_{2}, M_{3}\right)\right) \simeq \operatorname{Hom}\left(M_{1}, M_{3} \otimes M_{2}^{\vee}\right)
$$

(first step being $T \mapsto\left(m_{1} \mapsto\left(m_{2} \mapsto T\left(m_{1} \otimes m_{2}\right)\right)\right)$) coincides with the composite isomorphism
$\operatorname{Hom}\left(M_{1} \otimes M_{2}, M_{3}\right) \simeq M_{3} \otimes\left(M_{1} \otimes M_{2}\right)^{\vee} \simeq M_{3} \otimes\left(M_{1}^{\vee} \otimes M_{2}^{\vee}\right) \simeq\left(M_{3} \otimes M_{2}^{\vee}\right) \otimes M_{1}^{\vee} \simeq \operatorname{Hom}\left(M_{1}, M_{3} \otimes M_{2}^{\vee}\right)$.
Formulate and prove a naturality statement. (Hint: to compare the isomorphisms, begin with an elementary tensor in the middle and chase it out to both ends.)
(iii) Using $M_{1}^{\vee} \otimes M_{1} \rightarrow R$ via evaluation, prove that the composite map

$$
\operatorname{Hom}\left(M_{1}, M_{2}\right) \otimes M_{1} \simeq\left(M_{2} \otimes M_{1}^{\vee}\right) \otimes M_{1} \simeq M_{2} \otimes\left(M_{1}^{\vee} \otimes M_{1}\right) \rightarrow M_{2} \otimes R \simeq M_{2}
$$

is characterized by $T \otimes m_{1} \mapsto T\left(m_{1}\right)$.
5. Let M and M^{\prime} be finite free modules over a commutative ring R, and let $\phi: M^{\vee} \otimes M^{\prime} \simeq M^{\prime \vee \vee} \otimes M^{\vee}$ be

$$
M^{\vee} \otimes M^{\prime} \simeq M^{\prime} \otimes M^{\vee} \simeq M^{\prime \vee \vee} \otimes M^{\vee}
$$

the first step being the "flip" isomorphism. By chasing suitable elementary tensors in $M^{\vee} \otimes M^{\prime}$ (and not using bases), prove the commutativity of

6. Consider finite-dimensional vector spaces over a field F. Let W be a subspace of V with dimension $n>0$. Prove that the line $\wedge^{n}(W)$ inside of $\wedge^{n}(V)$ uniquely determines W as a subspace of V. (Hint: if W^{\prime} is another n-dimensional subspace, compute using a basis of V built from extending a basis of $W \cap W^{\prime}$ separately to bases of W and W^{\prime}.)

