
Math 210A. Homework 7

1. Read the handout on tensorial maps, and do the following exercises involving a commutative ring R.
(i) Prove that there is a unique linear isomorphism R⊗R R ' R satisfying a⊗ b 7→ ab.
(ii) Let M , M ′, N , M ′ be R-modules. Consider linear maps T : M → N and T ′ : M ′ → N ′. These define

a linear map T ⊗T ′ : M ⊗RM
′ → N ⊗RN

′ uniquely characterized by m⊗m′ 7→ T (m)⊗T ′(m′). Show that
there is a unique R-linear map HomR(M,N)⊗R HomR(M ′, N ′)→ HomR(M ⊗R M

′, N ⊗R N
′) carrying the

elementary tensor T ⊗ T ′ to the linear map denoted above by the same notation! Prove that if M , N , M ′,
and N ′ are finite free R-modules then it is an isomorphism. Interpret the case N = N ′ = R using (i).

(iii) For any four R-modules M1, . . . ,M4 (not necessarily finite free), prove the existence and uniqueness of
an R-linear isomorphism (M1⊗M2)⊗(M3⊗M4) 'M1⊗((M2⊗M3)⊗M4) satisfying (m1⊗m2)⊗(m3⊗m4) 7→
m1 ⊗ ((m2 ⊗m3)⊗m4) for all mi ∈Mi.

(iv) For any R-module N , an element of N⊗N is symmetric if it is invariant under the “flip” automorphism
characterized by n ⊗ n′ 7→ n′ ⊗ n. Let M be a finite free R-module, and consider the composite linear
isomorphism M∨⊗M∨ ' (M ⊗M)∨ ' Bil(M ×M,R) (the final term given the natural R-module structure
via pointwise linear combinations of bilinear forms). By working with elementary tensors, check that the
“flip” automorphism on the left is carried over to the automorphism of the right defined by swapping variables
(i.e., B is carried to (m,m′) 7→ B(m′,m)). Deduce from this (without any explicit mention of bases) that
symmetric bilinear forms on the right correspond to symmetric tensors on the left and vice-versa.

2. For ideals I, J in a commutative ring R, show (R/I) ⊗R (R/J) ' R/(I + J) via a ⊗ b 7→ ab mod I + J .
Deduce for n,m ≥ 1 that (Z/nZ) ⊗Z (Z/mZ) = 0 precisely when gcd(m,n) = 1. Also prove directly that
there is no nonzero Z-bilinear map (Z/nZ)× (Z/mZ)→M to a Z-module M when gcd(m,n) = 1.

3. Let A be a commutative ring, and M an A-module.
(i) For any multiplicative set S in A, prove the existence and uniqueness of an A-linear isomorphism

S−1A⊗A M ' S−1M satisfying (a/s)⊗m 7→ am/s.
(ii) Let B be an A-algebra, and M an A-module. Prove that the A-module B ⊗A M admits a unique

B-module structure respecting its A-module structure and satisfying b′ · (b ⊗m) = b′b ⊗m for all b, b′ ∈ B
and m ∈ M . This is called the scalar extension of M to B. In case B = A/I show that this is the usual
A/I-module structure on M/IM via the A-linear isomorphism (A/I) ⊗A M ' M/IM , and show that it
makes the isomorphism in (i) become S−1A-linear.

(iii) Let T : M ′ → M be an A-linear map, and B an A-algebra. Prove that there is a unique B-linear
map TB : B ⊗A M ′ → B ⊗A M satisfying b⊗m′ 7→ b⊗ T (m). This is called the scalar extension of T over
B. For A-linear T ′ : M ′′ → M ′ prove (T ◦ T ′)B = TB ◦ T ′B , and explain how scalar extension is related to
the ring map Matn×n′(A)→ Matn×n′(B).

(iv) Let A
g→ B

f→ C be ring maps, and T : M ′ →M an A-linear map. Prove the existence and uniqueness
of a C-linear isomorphism C ⊗B (B ⊗A M) ' C ⊗A M satisfying c ⊗ (b ⊗m) 7→ cf(b) ⊗m, and show it is
functorial in M in the sense that it carries (TB)C over to TC .

4. Let X and X ′ be objects in a category C, and let hX = HomC(·, X) and hX′ = HomC(·, X ′) be the
associated contravariant functors from C to the category of sets.

(i) For any morphism f : X ′ → X, define a natural transformation hf : hX′ → hX via composition with
f . Check that this really is a natural transformation, that hidX

is the identity transformation of hX , and
that hf◦g = hg ◦ hf for any g : X ′′ → X ′.

(ii) Prove Yoneda’s Lemma: every natural transformation hX′ → hX has the form hf for a unique f .
(Hint: chase identity morphisms of X and X ′.) This simple-looking fact is extremely useful.

(iii) For a contravariant functor F from C to the category of sets, and ξ ∈ F (X), define hX → F via
HomC(Y,X) → F (Y ) carrying f : Y → X to F (f)(ξ) ∈ F (Y ). (Here we used contravariance of F .) Prove
that this is a natural transformation, and that every natural transformation hX → F has this form for a
unique ξ ∈ F (X). In the special case that hX → F is an isomorphism, we call the pair (X, ξ) – and not just
X! – a universal object for F . (There is an evident analogue for covariant F .) How does this generalize (ii)?
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