
Math 210A. Homework 6
1. Let C be a category, and {Xi}i∈I a set of objects in C.
(i) A product

∏
Xi in C (if it exists) is an object P equipped with maps pi : P → Xi such that for any

object X and collection of maps fi : X → Xi, there is a unique map f : X → P such that pi ◦ f = fi for
all i. Express this condition as a final object in a category, and deduce that such a (P, {pi}) is unique up to
unique isomorphism (in what sense of “isomorphism”?) if it exists.

(ii) Passing to Copp, we get a notion of coproduct of the Xi’s. Express this concretely in terms of C (in
terms of an initial object for receiving maps from all Xi’s). Prove that in the category of sets coproducts exist
and are disjoint unions (with which maps from the Xi’s?), and that in the category of R-modules coproducts
exist and are direct sums (with which maps from the Xi’s?), so “underlying set” does not commute with
formation of coproducts here (in contrast with products)!

2. Let D be a diagram of objects Xi in a category C. (There could be many maps between the same pair
of objects.) Consider the tuples (X, {fi}) consisting of maps fi : X → Xi from a single X such that the fi’s
are compatible with all maps in D: for any map h : Xi → Xj occurring in D, h ◦ fi = fj .

(i) Define a reasonable notion of morphism between such tuples so that you get a category, and formulate
in concrete terms what a final object means in this category. Such an object (along with its maps to the
Xi’s!) is called an inverse limit of D if it exists, and is denoted lim←−D. Important cases are (a) D consists of
a sequence of objects {Xn}n≥0 equipped with maps fn : Xn+1 → Xn for all n, for which lim←−D is denoted
lim←−Xn with the fn’s understood, (b) no maps in D, in which case lim←−D is just

∏
Xi by another name!

(ii) Using submodules of products, show that inverse limits always exist in the category of modules over
a ring. Do similarly in the category of rings. And the category of sets.

(iii) Let A be a commutative ring, and I an ideal. Consider the diagram using A/In+1 → A/In for all n.
Construct a ring map A→ lim←−A/I

n, and show A is adic with respect to I if and only if it is an isomorphism.

3. (i) By transferring the notion of inverse limit from Copp as in Exercise 2, explicitly define the concept of
a colimit of a diagram D in C without mentioning Copp; , it is denoted lim−→D (if it exists).

(ii) Using quotients of direct sums, construct colimits in the category of modules. Also do the construction
in the category of sets, using the quotient of a disjoint union by a suitable equivalence relation.

(iii) Prove that a module is a colimit of the diagram (with inclusion maps) of finitely generated submodules.

4. Read the short §3 in Chapter III, and do the following.
(i) Using AB1, prove that zero in Hom(X,Y ) is the composite X → 0 → Y in additive categories. For

a finite coproduct ⊕Xi and finite product
∏
Xi, prove there is a unique map f : ⊕Xi →

∏
Xi such that

Xi0 → ⊕Xi
f→

∏
Xi → Xi0 is the identity for all i0. Axiom AB2 should require f to be an isomorphism!

(ii) In additive categories, show kernels and cokernels have the categorical characterizations as for modules.
For f : M → M ′, prove ker f = 0 if and only if Hom(X,M) → Hom(X,M ′) is injective for all X, and
coker f = 0 if and only if Hom(M ′, X) → Hom(M,X) is injective for all X (the respective definitions of
monomorphism and epimorphism). If C is abelian, prove Copp is, swapping kernels and cokernels.

(iii) In the category of finite free Z-modules, prove kernels and cokernels exist with f : M → M ′ having
cokernel (M ′/f(M))/(M ′/f(M))tor. Exhibit f with ker f = 0 and coker f = 0 yet f not an isomorphism,
so C is not abelian, Is the category of complexes of modules over an associative ring abelian?

(iv) Let f ′ : M → M ′ and f ′′ : M → M ′′ be morphisms in an abelian category. Let δ : M → M ′ ⊕ X
be the “anti-diagonal” given by (f ′,−f ′′). Prove that P := coker δ equipped with its natural maps from M ′

and M ′′ is a colimit of the diagram M ′
f ′

← M
f ′′

→ M ′′ in the sense of Exercise 3(i); it is called a pushout (of
f ′ along f ′′, or vice-versa). Using AB4, show that if f ′ is a monomorphism then so is M ′′ → P .

(v) For f : M → M ′ in an additive category with AB3, the coimage is coim(f) = coker(ker f → M) and
the image is im(f) = ker(M ′ → coker f). Prove coim(f) → M ′ uniquely factors through im(f) → M ′, and
coim(f) → im(f) is a monomorphism when AB4 holds (apply end of (iv) to pushout of im(f) → M ′ along
any im(f)→ X). Use the end of (ii) to infer coim(f)→ im(f) is an isomorphism in abelian categories.

5. Let {vi} be a basis of a finite-dimensional vector space V over a field k. Prove that x =
∑
cijvi⊗vj ∈ V ⊗V

is an elementary tensor (i.e., x = v ⊗ w for some v, w ∈ V ) if and only if cijci′j′ = cij′ci′j for all i, j, i′, j′.
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