Math 210A. Homework 4

1. Read the handout on Eisenstein's criterion and Gauss' Lemma. Then do the following exercise at the end of that handout: factor $-6 x^{3}+6 x^{2} y^{2}+6 x^{3} y-3 x y+3 y^{3}+3 x y^{2} \in \mathbf{Z}[x, y]$ into irreducibles.
2. Let A be a commutative ring, $a \in A$ any element. Recall that $A[x] /(a x-1) \rightarrow A_{a}$ defined by $x \mapsto 1 / a$ is an isomorphism. Deduce that $1-a x \in A[x]^{\times}$if and only if a is nilpotent. In such cases, give a formula for $(1-a x)^{-1}$ in $A[x]$. (Optional: can you prove the "only if" direction without using the ring A_{a} ?)
3. Let A be a commutative ring, and S and T multiplicative sets in A with $S \subseteq T$.
(i) Prove that there is a unique A-algebra map $S^{-1} A \rightarrow T^{-1} A$. In case $T=A-\mathfrak{p}$ for a prime ideal \mathfrak{p} of A disjoint from S, with $P=S^{-1} \mathfrak{p}$ the prime ideal of $S^{-1} A$ corresponding to \mathfrak{p}, show that the map $S^{-1} A \rightarrow A_{\mathfrak{p}}$ uniquely factors through an isomorphism $\left(S^{-1} A\right)_{P} \simeq A_{\mathfrak{p}}$.
(ii) Show that under the map of rings $A \rightarrow A_{\mathfrak{p}}$, the preimage of the maximal ideal $\mathfrak{p} A_{\mathfrak{p}}$ is \mathfrak{p}, so there is a natural injective map $A / \mathfrak{p} \hookrightarrow A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ into the residue field at $\mathfrak{p} A_{\mathfrak{p}}$. Deduce that there is a natural map of fields $\operatorname{Frac}(A / \mathfrak{p}) \rightarrow A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$, and prove it is an isomorphism inverse to the isomorphism constructed in class.
4. Let A be a commutative ring, S a multiplicative set of A, and M and N two A-modules.
(i) Construct a natural $S^{-1} A$-linear map $S^{-1} \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} M, S^{-1} N\right)$, and prove it is an isomorphism if M is a free A-module of finite rank. Deduce the same if M admits a "finite presentation" $M \simeq \operatorname{coker}\left(A^{n} \rightarrow A^{n^{\prime}}\right)$ for some $n, n^{\prime} \geq 1$; i.e., M has a finite set of generators whose module of relations is also finitely generated. (Hint: if $M^{\prime} \rightarrow M$ is surjective with kernel $M^{\prime \prime}$ then show that $\operatorname{Hom}_{A}(M, N)$ is the kernel of the restriction map $\operatorname{Hom}_{A}\left(M^{\prime}, N\right) \rightarrow \operatorname{Hom}_{A}\left(M^{\prime \prime}, N\right)$.) In Math 210B you will see many examples of A for which all finitely generated A-modules admit a finite presentation.
(ii) Prove that the natural maps $\oplus M_{i} \rightarrow \oplus S^{-1} M_{i}$ and $\prod M_{i} \rightarrow \prod S^{-1} M_{i}$ uniquely factor through $S^{-1} A$ linear maps $S^{-1}\left(\oplus M_{i}\right) \rightarrow \oplus S^{-1} M_{i}$ and $S^{-1}\left(\prod M_{i}\right) \rightarrow \prod S^{-1} M_{i}$ respectively, with the first an isomorphism. Give an example in which the second is not surjective, and an example in which it is not injective.
(iii) Let M_{1}, \ldots, M_{n} be submodules of M. Prove that $\cap S^{-1} M_{i}=S^{-1}\left(\cap M_{i}\right)$ inside of $S^{-1} M$. Give a counterexample with infinite intersections.
5. Give an example of a commutative ring A and an A-module M such that $M_{\mathfrak{p}}$ is finitely generated over $A_{\mathfrak{p}}$ for all prime ideals \mathfrak{p} of A, but M is not finitely generated over A. (Hint: try $A=\mathbf{Z}$.) Prove the following salvage: if $a_{1}, \ldots, a_{n} \in A$ generate the unit ideal and $M_{a_{i}}$ is finitely generated over $A_{a_{i}}$ for all i then show that M is finitely generated over A. (Hint: chase numerators.)
6. Let A be a commutative ring, and let $\operatorname{Spec} A$ denote the set of prime ideals of A. (For example, $\operatorname{Spec} \mathbf{Z}$ consists of (0) and the ideals (p) for positive primes p.)
(i) For any ideal I of A, let $V(I) \subseteq \operatorname{Spec} A$ denote the set of prime ideals containing I. (Note that $V\left(I^{n}\right)=V(I)$ for any $n \geq 1$, so $V(I)$ does not determine I.) Prove that $V((1))=\emptyset, V((0))=\operatorname{Spec} A$, $V\left(I_{1}\right) \cup \cdots \cup V\left(I_{n}\right)=V\left(\prod I_{j}\right)$, and $\cap V\left(I_{i}\right)=V\left(\sum I_{i}\right)$ for any collection of ideals $\left\{I_{i}\right\}$ in A. In other words, there is a unique topology on $\operatorname{Spec} A$ relative to which the subsets $V(I)$ are the closed sets; this is the Zariski topology.
(ii) The open sets in the Zariski topology are "big". Prove that a base of opens is given by the subsets $U_{a}=\operatorname{Spec}(A)-V((a))$ for $a \in A$ ("complement of a hypersurface"), and that a collection of opens $\left\{U\left(a_{i}\right)\right\}$ covers $\operatorname{Spec} A$ if and only if the a_{i} 's generate 1 . Deduce that $\operatorname{Spec} A$ is quasi-compact (i.e., every open cover has a finite subcover).
(iii) Let $f: A \rightarrow B$ be a map of rings. Prove that the map $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ defined by $\mathfrak{q} \mapsto f^{-1}(\mathfrak{q})$ is continuous, and that the preimage of $\mathfrak{p} \in \operatorname{Spec} A$ is homeomorphic to $\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}\right)$ (where $B_{\mathfrak{p}}$ is the localization of B at the multiplicative set $f(A-\mathfrak{p})$).
(iv) Applying (iii) to $A \rightarrow S^{-1} A$, show that $\operatorname{Spec}\left(S^{-1} A\right) \rightarrow \operatorname{Spec} A$ is a homeomorphism onto the subset of primes disjoint from S. In particular, $\operatorname{Spec}\left(A_{a}\right)$ maps homeomorphically onto the open subset U_{a}.
