
Math 210A. Homework 3

1. (i) Prove that if a nonzero ideal I in a domain R is free as an R-module then I is principal. As an
application, for R = Z[

√
−5] prove that neither of the ideals P = (3, 1 +

√
−5) and Q = (3, 1−

√
−5) is free.

(ii) Prove that P ∩Q = 3R, and that the addition map P ⊕Q→ R defined by (a, b) 7→ a+ b is surjective.
(iii) Deduce that P ⊕Q ' R2 as R-modules, so a direct summand of a free module need not be free!

2. (i) Read §2 in Appendix 2 on Zorn’s Lemma.
(ii) As an application, prove that if A is a nonzero commutative ring then there exist maximal ideals (and

in particular, prime ideals) in A. (Where does your argument use A 6= 0?) Applying this to A/a for a proper
ideal a of A, prove that a is contained in a maximal ideal of A.

(iii) Using the operation M  M/mM for A-modules M and maximal ideals m of A, prove that if A 6= 0
and there is an A-linear surjection (resp. isomorphism) An � Am then n ≥ m (resp. n = m). Deduce that
if a module over a nonzero commutative ring admits a finite basis then all bases have the same finite size
(called the rank of the module).

3. Let V be a finite-dimensional nonzero vector space over a field F . A linear self-map T : V → V
is semisimple if every T -stable subspace of V admits a T -stable complementary subspace. (That is, if
T (W ) ⊆ W then there exists a decomposition V = W ⊕W ′ with T (W ′) ⊆ W ′.) Keep in mind that such a
complement is not unique in general (e.g., consider T to be a scalar multiplication with dimV > 1).

(i) For each monic irreducible π ∈ F [t], define V (π) to be the subspace of v ∈ V killed by a power of π(T ).
Prove that V (π) 6= 0 if and only if π|mT , and that V = ⊕π|mT

V (π). (In case F is algebraically closed, these
are the generalized eigenspaces of T on V .)

(ii) Use rational canonical form to prove that T is semisimple if and only if mT has no repeated irreducible
factor over F . (Hint: apply (i) to T -stable subspaces of V to reduce to the case when mT has one monic
irreducible factor.) Deduce that a Jordan block of rank > 1 is never semisimple, that mT is the “squarefree
part” of χT when T is semisimple, and that if W ⊆ V is a T -stable nonzero proper subspace then the induced
endomorphisms TW : W →W and T : V/W → V/W are semisimple when T is semisimple.

(iii) Let T ′ : V ′ → V ′ be another linear self-map with V ′ nonzero and finite-dimensional over F . Prove
that T and T ′ are semisimple if and only if the self-map T ⊕ T ′ of V ⊕ V ′ is semisimple.

(iii) Choose T ∈ Matn(F ), and let F ′/F be an extension splitting mT . Prove that T is semisimple as an
F ′-linear endomorphism of F ′n if and only if T is diagonalizable over F ′, and also if and only if mT ∈ F [t]
is separable; we then say T is absolutely semisimple over F . Deduce that semisimplicity is equivalent to
absolutely semisimplicity over F if F is perfect, and give a counterexample over every imperfect field.

4. Let V be a vector space over a field F with n = dimV > 0 finite, and let T : V → V be linear.
(i) Using rational canonical form and Cayley-Hamilton, prove the following are equivalent: TN = 0 for

some N ≥ 1, Tn = 0, with respect to some ordered basis of V the matrix for T is upper triangular with 0’s
on the diagonal, χT = tn. We call such T nilpotent.

(ii) We say that T is unipotent if T − 1 is nilpotent. Formulate characterizations of unipotence analogous
to the conditions in (i), and prove that a unipotent T is invertible.

(iii) Assume F is algebraically closed. Using Jordan canonical form and generalized eigenspaces, prove
that there is a unique expression T = Tss + Tn where Tss and Tn are a pair of commuting endomorphisms of
V with Tss semisimple and Tn nilpotent. (This is the additive Jordan decomposition of T .) Show by example
with dimV = 2 that uniqueness fails if we drop the “commuting” requirement, and show in general that
χT = χTss (so T is invertible if and only if Tss is invertible).

(iv) Assume F is algebraically closed and T is invertible. Using the existence and uniqueness of additive
Jordan decomposition, prove that there is a unique expression T = T ′ssT

′
u where T ′ss and T ′u are a pair of

commuting endomorphisms of V with T ′ss semisimple and T ′u unipotent (so T ′ss is necessarily invertible too).
This is the multiplicative Jordan decomposition of T .

(v) Use Galois theory with matrices to prove (iii) and (iv) for any perfect F (using the result over
an algebraic closure, or rather over a suitable finite Galois extension), and give counterexamples for any
imperfect F . This leads to the important Jordan decomposition in Lie algebras and linear algebraic groups.
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