Math 210A. Homework 3

1. (i) Prove that if a nonzero ideal I in a domain R is free as an R-module then I is principal. As an application, for $R=\mathbf{Z}[\sqrt{-5}]$ prove that neither of the ideals $P=(3,1+\sqrt{-5})$ and $Q=(3,1-\sqrt{-5})$ is free.
(ii) Prove that $P \cap Q=3 R$, and that the addition map $P \oplus Q \rightarrow R$ defined by $(a, b) \mapsto a+b$ is surjective.
(iii) Deduce that $P \oplus Q \simeq R^{2}$ as R-modules, so a direct summand of a free module need not be free!
2. (i) Read $\S 2$ in Appendix 2 on Zorn's Lemma.
(ii) As an application, prove that if A is a nonzero commutative ring then there exist maximal ideals (and in particular, prime ideals) in A. (Where does your argument use $A \neq 0$?) Applying this to A / \mathfrak{a} for a proper ideal \mathfrak{a} of A, prove that \mathfrak{a} is contained in a maximal ideal of A.
(iii) Using the operation $M \rightsquigarrow M / \mathfrak{m} M$ for A-modules M and maximal ideals \mathfrak{m} of A, prove that if $A \neq 0$ and there is an A-linear surjection (resp. isomorphism) $A^{n} \rightarrow A^{m}$ then $n \geq m$ (resp. $n=m$). Deduce that if a module over a nonzero commutative ring admits a finite basis then all bases have the same finite size (called the rank of the module).
3. Let V be a finite-dimensional nonzero vector space over a field F. A linear self-map $T: V \rightarrow V$ is semisimple if every T-stable subspace of V admits a T-stable complementary subspace. (That is, if $T(W) \subseteq W$ then there exists a decomposition $V=W \oplus W^{\prime}$ with $T\left(W^{\prime}\right) \subseteq W^{\prime}$.) Keep in mind that such a complement is not unique in general (e.g., consider T to be a scalar multiplication with $\operatorname{dim} V>1$).
(i) For each monic irreducible $\pi \in F[t]$, define $V(\pi)$ to be the subspace of $v \in V$ killed by a power of $\pi(T)$. Prove that $V(\pi) \neq 0$ if and only if $\pi \mid m_{T}$, and that $V=\oplus_{\pi \mid m_{T}} V(\pi)$. (In case F is algebraically closed, these are the generalized eigenspaces of T on V.)
(ii) Use rational canonical form to prove that T is semisimple if and only if m_{T} has no repeated irreducible factor over F. (Hint: apply (i) to T-stable subspaces of V to reduce to the case when m_{T} has one monic irreducible factor.) Deduce that a Jordan block of rank >1 is never semisimple, that m_{T} is the "squarefree part" of χ_{T} when T is semisimple, and that if $W \subseteq V$ is a T-stable nonzero proper subspace then the induced endomorphisms $T_{W}: W \rightarrow W$ and $\bar{T}: V / W \rightarrow V / W$ are semisimple when T is semisimple.
(iii) Let $T^{\prime}: V^{\prime} \rightarrow V^{\prime}$ be another linear self-map with V^{\prime} nonzero and finite-dimensional over F. Prove that T and T^{\prime} are semisimple if and only if the self-map $T \oplus T^{\prime}$ of $V \oplus V^{\prime}$ is semisimple.
(iii) Choose $T \in \operatorname{Mat}_{n}(F)$, and let F^{\prime} / F be an extension splitting m_{T}. Prove that T is semisimple as an F^{\prime}-linear endomorphism of $F^{\prime n}$ if and only if T is diagonalizable over F^{\prime}, and also if and only if $m_{T} \in F[t]$ is separable; we then say T is absolutely semisimple over F. Deduce that semisimplicity is equivalent to absolutely semisimplicity over F if F is perfect, and give a counterexample over every imperfect field.
4. Let V be a vector space over a field F with $n=\operatorname{dim} V>0$ finite, and let $T: V \rightarrow V$ be linear.
(i) Using rational canonical form and Cayley-Hamilton, prove the following are equivalent: $T^{N}=0$ for some $N \geq 1, T^{n}=0$, with respect to some ordered basis of V the matrix for T is upper triangular with 0's on the diagonal, $\chi_{T}=t^{n}$. We call such T nilpotent.
(ii) We say that T is unipotent if $T-1$ is nilpotent. Formulate characterizations of unipotence analogous to the conditions in (i), and prove that a unipotent T is invertible.
(iii) Assume F is algebraically closed. Using Jordan canonical form and generalized eigenspaces, prove that there is a unique expression $T=T_{\mathrm{ss}}+T_{\mathrm{n}}$ where T_{ss} and T_{n} are a pair of commuting endomorphisms of V with $T_{\text {ss }}$ semisimple and T_{n} nilpotent. (This is the additive Jordan decomposition of T.) Show by example with $\operatorname{dim} V=2$ that uniqueness fails if we drop the "commuting" requirement, and show in general that $\chi_{T}=\chi_{T_{\mathrm{ss}}}$ (so T is invertible if and only if T_{ss} is invertible).
(iv) Assume F is algebraically closed and T is invertible. Using the existence and uniqueness of additive Jordan decomposition, prove that there is a unique expression $T=T_{\mathrm{ss}}^{\prime} T_{\mathrm{u}}^{\prime}$ where T_{ss}^{\prime} and T_{u}^{\prime} are a pair of commuting endomorphisms of V with T_{ss}^{\prime} semisimple and T_{u}^{\prime} unipotent (so T_{ss}^{\prime} is necessarily invertible too). This is the multiplicative Jordan decomposition of T.
(v) Use Galois theory with matrices to prove (iii) and (iv) for any perfect F (using the result over an algebraic closure, or rather over a suitable finite Galois extension), and give counterexamples for any imperfect F. This leads to the important Jordan decomposition in Lie algebras and linear algebraic groups.
