Math 210A. Homework 10

1. (i) Do Exercise 27 in Chapter XX. (Allow the coefficient ring to be associative.)
(ii) Here is an alternative, and more intrinsic, approach to the same thing: applying $\operatorname{Hom}(\cdot, N)$ to the given short exact sequence to get an exact sequence

$$
0 \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}(E, N) \rightarrow \operatorname{Hom}(N, N) \xrightarrow{\delta} \operatorname{Ext}^{1}(M, N)
$$

$\operatorname{Prove} \operatorname{id}_{N} \in \operatorname{Hom}(N, N)$ is carried by δ to the same element of $\operatorname{Ext}^{1}(M, N)$. (A more interesting challenge, not assigned, is to describe the additive and inversion structure on the group $\operatorname{Ext}^{1}(M, N)$ entirely in the language of extension classes. This is useful. It is called Baer sum.)
2. Let G be an arbitrary group (not necessarily finite), and consider linear representations (not necessarily of finite dimension) over an arbitrary field k.
(i) If V_{1}, \ldots, V_{n} are representation spaces, prove that $V_{1} \otimes \cdots \otimes V_{n}$ has a unique k-linear G-action such that $g .\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g\left(v_{1}\right) \otimes \cdots \otimes g\left(v_{n}\right)$ for all $g \in G$ and $v_{i} \in V_{i}$. Using functoriality considerations, explain why $V_{1} \otimes V_{2} \simeq V_{2} \otimes V_{1}$ and the "associativity" of tensor products with $n=3$ are G-equivariant.
(ii) Verify that if (W, ρ) is a representation space, then so is its linear dual W^{*} via $g \cdot \ell=\ell \circ \rho\left(g^{-1}\right)$. Prove that this is the unique action that makes the evaluation mapping $W \otimes W^{*} \rightarrow k$ be G-equivariant when using the trivial G-action on k.
(iii) Let $B: W \times W^{\prime} \rightarrow k$ be a bilinear pairing between representation spaces. Prove that B is G-invariant in the sense that $B\left(g w, g w^{\prime}\right)=B\left(w, w^{\prime}\right)$ for all w, w^{\prime}, g if and only if the induced linear map $W \otimes W^{\prime} \rightarrow k$ is G-equivariant (using the trivial action on k), and also if and only if the induced linear map $W^{\prime} \rightarrow W^{*}$ (via $w^{\prime} \mapsto B\left(\cdot, w^{\prime}\right)$) is G-equivariant. (For example, by (ii), $W \rightarrow W^{* *}$ is G-equivariant.)
(iv) Construct natural G-actions on $\operatorname{Sym}^{n}(V)$ and $\wedge^{n}(V)$ for all $n \geq 1$, and if $\operatorname{dim} V$ is finite prove that the natural duality isomorphism $\wedge^{n}\left(V^{*}\right) \simeq\left(\wedge^{n} V\right)^{*}$ and its tensor product analogue are G-equivariant.
3. Let G be an arbitrary group and (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$ be representation spaces (possibly of infinite dimension) over an arbitrary field k. Define a G-action on the k-vector space $\operatorname{Hom}_{k}\left(V, V^{\prime}\right)$ by $g \cdot T=\rho^{\prime}(g) \circ T \circ \rho\left(g^{-1}\right)$.
(i) Prove this really is a G-linear representation structure (in particular, a left G-action) on the k-vector space $\operatorname{Hom}\left(V, V^{\prime}\right)$, with $\operatorname{Hom}\left(V, V^{\prime}\right)^{G}=\operatorname{Hom}_{k[G]}\left(V, V^{\prime}\right)$.
(ii) If $\operatorname{dim} V$ is finite, prove the linear isomorphism $V^{\prime} \otimes V^{*} \simeq \operatorname{Hom}_{k}\left(V, V^{\prime}\right)$ is G-equivariant.
4. Let V be a finite-dimensional representation over any field k for an arbitrary group G.
(i) On the category of (left) $k[G]$-modules, identify $\operatorname{Hom}_{k[G]}(V, \cdot)$ and $\left(V^{*} \otimes_{k}(\cdot)\right)^{G}$. (Use Exercise 3.)
(ii) Let $\mathrm{H}_{k}^{\bullet}(G, \cdot)$ denote the derived functor of $M \rightsquigarrow M^{G}$ on the category of left $k[G]$-modules. (It can be shown that this agrees with the restriction of $\mathrm{H}^{\bullet}(G, \cdot)$ computed on the category of left $\mathbf{Z}[G]$-modules, but we omit that here.) Use universal δ-functoriality to naturally identify $\operatorname{Ext}_{k[G]}^{i}\left(V, V^{\prime}\right)$ and $\mathrm{H}_{k}^{i}\left(G, V^{*} \otimes V^{\prime}\right)$ for all i. (This is especially useful for $i=1$, due to Exercise 1 , when generalized to allow k beyond fields.)
5. Let G_{1} and G_{2} be finite groups, and $\left(V_{i}, \rho_{i}\right)$ a finite-dimensional representation of G_{i} over a field k with $\operatorname{char}(k)=0$.
(i) Prove that $V=V_{1} \otimes_{k} V_{2}$ is a representation of $G=G_{1} \times G_{2}$ via $\left(g_{1}, g_{2}\right) \cdot\left(v_{1} \otimes v_{2}\right)=\left(g_{1} \cdot v_{1}\right) \otimes\left(g_{2} . v_{2}\right)$. (Don't confuse this with the setup in Exercise 2(i), where there was just one group!)
(ii) Let $\chi_{i}=\chi_{\rho_{i}}$ as a character of G_{i} and $\chi=\chi_{V}$ as a character of G. Prove that

$$
\langle\chi, \chi\rangle_{G}=\left\langle\chi_{1}, \chi_{1}\right\rangle_{G_{1}} \cdot\left\langle\chi_{2}, \chi_{2}\right\rangle_{G_{2}} .
$$

When k is algebraically closed, deduce that χ is irreducible for G if and only if each χ_{i} is irreducible for G_{i}. Give a counterexample to "if" with $k=\mathbf{R}$ (hint: consider cyclic G_{i} and $\operatorname{dim} V_{i}=2$ with $V^{G} \neq 0$).
(iii) Assume k is algebraically closed. Prove that χ determines the χ_{i} 's, and that every irreducible representation of $G_{1} \times G_{2}$ over k arises in this way. (Hint: View a representation space for $G_{1} \times G_{2}$ as one for each G_{i} separately. For the second part, if V_{1} is an irreducible constituent of V for G_{1} then show $\operatorname{Hom}_{k\left[G_{1}\right]}\left(V_{1}, V\right)$ is naturally a nonzero G_{2}-representation space. Let V_{2} be an irreducible constituent and consider the evaluation map $V_{1} \otimes_{k} V_{2} \rightarrow V$; is it G-equivariant and nonzero?)

