MATH 210A. HOMEWORK 1

1. Let R be an associative ring with identity. An element v € R is called a unit if it has a 2-sided multiplicative
inverse: for some v’ € R, uu’ = u'u = 1. The set of units is denoted R*. In general, computing R* is very hard.

(i) The “2-sided” condition cannot be removed: find an infinite-dimensional vector space V over a field k and a
k-linear map f : V — V admitting an inverse on one side but not the other. Deduce that the endomorphism ring
R = Endg (V) contains elements having a 1-sided inverse but no 2-sided inverse.

(ii) Show that if R is a finite-dimensional algebra over a field k then the 2-sided condition can be dropped: if
r,7" € R satisfy rr’ = 1 then 7'r = 1. (Hint: consider z — 7'z as a k-linear self-map of R.) Deduce that if such an R
is nonzero and has no zero-divisors (i.e., nonzero x,y € R such that zy = 0) then R* = R — {0}.

(iii) Prove that R* is group. Also prove that if f : R — R’ is a ring homomorphism then f(R*) C R’ and the
restricted map R* — R'™ is a group homomorphism.

2. Let {M;}icr be a collection of left modules over an associative ring R. Give the direct product P := [[ M;
componentwise left R-module structure, and define the direct sum S := ®M; C [[ M; to be the submodule of tuples
(m;) for which all but finitely many m; vanish (so @M; = [[ M; if all but finitely many M; vanish, but not otherwise).

(i) Prove the following “universal mapping properties” of the direct product and direct sum in terms of the
projections 7; : P — M; and the inclusions j; : M; — S. If T; : M — M; are R-linear maps from a left R-module
M then there is a unique R-linear map T : M — P such that m; o T = T; for all ¢, and if L; : M; — N are R-linear
maps to a left R-module N then there is a unique R-linear map L : S — N such that Lo j; = L; for all 7. In other
words, there are unique ways to fill in commutative diagrams of linear maps
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when we let ¢ vary through I. Note that the properties go in opposite directions: direct sums map to things, direct
products receive maps from things.

(ii) For a left R-module M, explain why the specification of a linear isomorphism @®;er R ~ M is equivalent to the
specification of an indexed R-basis (i.e., linearly independent spanning set) {b; }icr of M.

3. Let R be an associative ring. For n > 1, rigorously define the polynomial ring R[X1,...,Xy] as follows. The
set R[X1,...,X,] consists of functions f : Z%, — R that vanish at all but finitely many elements of ZZ; loosely
speaking, f corresponds to 3. f(J)X” (as J varies through ZZ,).

(i) Define an R-module structure via pointwise operations on such f, and define the product (f-9J) =
S yiygr—y F(J)g(J") (this is a finite sum). Show that (f - g)(J) = 0 for all but finitely many J, and that this
makes R[X,...,X,] into an assocative ring containing R as a subring.

(ii) Define X; to be the function Z%, — R vanishing away from (0,...,1,...,0) (1 in the jth slot), which it carries
to 1. Prove that the X;’s are in the center of R[X1,...,X,] and that each f € R[X;,..., X,] has a unique expression
as a finite sum ZCLJXJ with ay € R and X7 := X{l < Xdn for J = (j1,...,5n)-

(iii) Prove the following “universal mapping property”: if ¢ : R — A is a map of associative rings and a1, ...,an € A
commute with each other and with ¢(R) then there is a unique ring map R[X1, ..., X,] — A extending ¢ and satisfying
X, +— a; for all 4. In case R = Z, show that there is a unique ring map ¢ : Z — A!

4. Let R be a commutative ring. The set M, (R) of n X n matrices with entries in R has an associative R-algebra
structure given by the habitual formulas. Note that if R — R is a map of commutative rings then applying it on
matrix entries defines a map M, (R’) — M, (R) of associative rings.

(i) Define the determinant det : M, (R) — R by the usual formula (as a sum indexed by the symmetric group Sy,).
Using the theory of determinants over a field, show that det is multiplicative when R is any domain. Then for any
m = (riy) and m’ = (ri;) in Mn(R), use the unique ring map Z[zi;, z};] — R satisfying z;; — ri; and zi; — ri; to
deduce the multiplicativity of det in general (by reduction to the case of the ring Z[z;;, z7;] that is a domain!).

(ii) Using the same technique, prove the Cayley-Hamilton theorem in M, (R) for any R (by reducing it to the case
over an algebraically closed field, which you are assumed to have seen before).

(iii) Define the trace Tr : M,(R) — R by the usual formula (r;;) — > 7. Prove that Tr(mm’) = Tr(m'm) by
reducing it to the known case over a field.

(iv) Prove Cramer’s Formula over any commutative ring (reducing to the known case over a field), so in particular
m € M, (R)™ if and only if det(m) € R*.



