Math 210A. Homework 1

1. Let R be an associative ring with identity. An element $u \in R$ is called a unit if it has a 2 -sided multiplicative inverse: for some $u^{\prime} \in R, u u^{\prime}=u^{\prime} u=1$. The set of units is denoted R^{\times}. In general, computing R^{\times}is very hard.
(i) The " 2 -sided" condition cannot be removed: find an infinite-dimensional vector space V over a field k and a k-linear map $f: V \rightarrow V$ admitting an inverse on one side but not the other. Deduce that the endomorphism ring $R=\operatorname{End}_{k}(V)$ contains elements having a 1 -sided inverse but no 2 -sided inverse.
(ii) Show that if R is a finite-dimensional algebra over a field k then the 2 -sided condition can be dropped: if $r, r^{\prime} \in R$ satisfy $r r^{\prime}=1$ then $r^{\prime} r=1$. (Hint: consider $x \mapsto r^{\prime} x$ as a k-linear self-map of R.) Deduce that if such an R is nonzero and has no zero-divisors (i.e., nonzero $x, y \in R$ such that $x y=0$) then $R^{\times}=R-\{0\}$.
(iii) Prove that R^{\times}is group. Also prove that if $f: R \rightarrow R^{\prime}$ is a ring homomorphism then $f\left(R^{\times}\right) \subseteq R^{\prime \times}$ and the restricted map $R^{\times} \rightarrow R^{\prime \times}$ is a group homomorphism.
2. Let $\left\{M_{i}\right\}_{i \in I}$ be a collection of left modules over an associative ring R. Give the direct product $P:=\prod M_{i}$ componentwise left R-module structure, and define the direct sum $S:=\oplus M_{i} \subseteq \prod M_{i}$ to be the submodule of tuples (m_{i}) for which all but finitely many m_{i} vanish (so $\oplus M_{i}=\prod M_{i}$ if all but finitely many M_{i} vanish, but not otherwise).
(i) Prove the following "universal mapping properties" of the direct product and direct sum in terms of the projections $\pi_{i}: P \rightarrow M_{i}$ and the inclusions $j_{i}: M_{i} \rightarrow S$. If $T_{i}: M \rightarrow M_{i}$ are R-linear maps from a left R-module M then there is a unique R-linear map $T: M \rightarrow P$ such that $\pi_{i} \circ T=T_{i}$ for all i, and if $L_{i}: M_{i} \rightarrow N$ are R-linear maps to a left R-module N then there is a unique R-linear map $L: S \rightarrow N$ such that $L \circ j_{i}=L_{i}$ for all i. In other words, there are unique ways to fill in commutative diagrams of linear maps

when we let i vary through I. Note that the properties go in opposite directions: direct sums map to things, direct products receive maps from things.
(ii) For a left R-module M, explain why the specification of a linear isomorphism $\oplus_{i \in I} R \simeq M$ is equivalent to the specification of an indexed R-basis (i.e., linearly independent spanning set) $\left\{b_{i}\right\}_{i \in I}$ of M.
3. Let R be an associative ring. For $n \geq 1$, rigorously define the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ as follows. The set $R\left[X_{1}, \ldots, X_{n}\right]$ consists of functions $f: \mathbf{Z}_{\geq 0}^{n} \rightarrow R$ that vanish at all but finitely many elements of $\mathbf{Z}_{\geq 0}^{n}$; loosely speaking, f corresponds to $\sum f(J) X^{J}$ (as J varies through $\mathbf{Z}_{\geq 0}^{n}$).
(i) Define an R-module structure via pointwise operations on such f, and define the product $(f \cdot g)(J)=$ $\sum_{J^{\prime}+J^{\prime \prime}=J} f\left(J^{\prime}\right) g\left(J^{\prime \prime}\right)$ (this is a finite sum). Show that $(f \cdot g)(J)=0$ for all but finitely many J, and that this makes $R\left[X_{1}, \ldots, X_{n}\right]$ into an assocative ring containing R as a subring.
(ii) Define X_{j} to be the function $\mathbf{Z}_{\geq 0}^{n} \rightarrow R$ vanishing away from $(0, \ldots, 1, \ldots, 0)$ (1 in the j th slot), which it carries to 1. Prove that the X_{j} 's are in the center of $R\left[X_{1}, \ldots, X_{n}\right]$ and that each $f \in R\left[X_{1}, \ldots, X_{n}\right]$ has a unique expression as a finite sum $\sum a_{J} X^{J}$ with $a_{J} \in R$ and $X^{J}:=X_{1}^{j_{1}} \cdots X_{n}^{j_{n}}$ for $J=\left(j_{1}, \ldots, j_{n}\right)$.
(iii) Prove the following "universal mapping property": if $\phi: R \rightarrow A$ is a map of associative rings and $a_{1}, \ldots, a_{n} \in A$ commute with each other and with $\phi(R)$ then there is a unique ring map $R\left[X_{1}, \ldots, X_{n}\right] \rightarrow A$ extending ϕ and satisfying $X_{i} \mapsto a_{i}$ for all i. In case $R=\mathbf{Z}$, show that there is a unique ring map $\phi: \mathbf{Z} \rightarrow A!$
4. Let R be a commutative ring. The set $M_{n}(R)$ of $n \times n$ matrices with entries in R has an associative R-algebra structure given by the habitual formulas. Note that if $R^{\prime} \rightarrow R$ is a map of commutative rings then applying it on matrix entries defines a map $M_{n}\left(R^{\prime}\right) \rightarrow M_{n}(R)$ of associative rings.
(i) Define the determinant det : $M_{n}(R) \rightarrow R$ by the usual formula (as a sum indexed by the symmetric group S_{n}). Using the theory of determinants over a field, show that det is multiplicative when R is any domain. Then for any $m=\left(r_{i j}\right)$ and $m^{\prime}=\left(r_{i j}^{\prime}\right)$ in $M_{n}(R)$, use the unique ring map $\mathbf{Z}\left[x_{i j}, x_{i j}^{\prime}\right] \rightarrow R$ satisfying $x_{i j} \mapsto r_{i j}$ and $x_{i j}^{\prime} \mapsto r_{i j}^{\prime}$ to deduce the multiplicativity of det in general (by reduction to the case of the ring $\mathbf{Z}\left[x_{i j}, x_{i j}^{\prime}\right]$ that is a domain!).
(ii) Using the same technique, prove the Cayley-Hamilton theorem in $M_{n}(R)$ for any R (by reducing it to the case over an algebraically closed field, which you are assumed to have seen before).
(iii) Define the trace $\operatorname{Tr}: M_{n}(R) \rightarrow R$ by the usual formula $\left(r_{i j}\right) \mapsto \sum r_{i i}$. Prove that $\operatorname{Tr}\left(m m^{\prime}\right)=\operatorname{Tr}\left(m^{\prime} m\right)$ by reducing it to the known case over a field.
(iv) Prove Cramer's Formula over any commutative ring (reducing to the known case over a field), so in particular $m \in M_{n}(R)^{\times}$if and only if $\operatorname{det}(m) \in R^{\times}$.
