
Math 210A. Homework 1

1. Let R be an associative ring with identity. An element u ∈ R is called a unit if it has a 2-sided multiplicative
inverse: for some u′ ∈ R, uu′ = u′u = 1. The set of units is denoted R×. In general, computing R× is very hard.

(i) The “2-sided” condition cannot be removed: find an infinite-dimensional vector space V over a field k and a
k-linear map f : V → V admitting an inverse on one side but not the other. Deduce that the endomorphism ring
R = Endk(V ) contains elements having a 1-sided inverse but no 2-sided inverse.

(ii) Show that if R is a finite-dimensional algebra over a field k then the 2-sided condition can be dropped: if
r, r′ ∈ R satisfy rr′ = 1 then r′r = 1. (Hint: consider x 7→ r′x as a k-linear self-map of R.) Deduce that if such an R
is nonzero and has no zero-divisors (i.e., nonzero x, y ∈ R such that xy = 0) then R× = R− {0}.

(iii) Prove that R× is group. Also prove that if f : R → R′ is a ring homomorphism then f(R×) ⊆ R′
×

and the

restricted map R× → R′
×

is a group homomorphism.

2. Let {Mi}i∈I be a collection of left modules over an associative ring R. Give the direct product P :=
Q
Mi

componentwise left R-module structure, and define the direct sum S := ⊕Mi ⊆
Q
Mi to be the submodule of tuples

(mi) for which all but finitely many mi vanish (so ⊕Mi =
Q
Mi if all but finitely many Mi vanish, but not otherwise).

(i) Prove the following “universal mapping properties” of the direct product and direct sum in terms of the
projections πi : P → Mi and the inclusions ji : Mi → S. If Ti : M → Mi are R-linear maps from a left R-module
M then there is a unique R-linear map T : M → P such that πi ◦ T = Ti for all i, and if Li : Mi → N are R-linear
maps to a left R-module N then there is a unique R-linear map L : S → N such that L ◦ ji = Li for all i. In other
words, there are unique ways to fill in commutative diagrams of linear maps
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when we let i vary through I. Note that the properties go in opposite directions: direct sums map to things, direct
products receive maps from things.

(ii) For a left R-module M , explain why the specification of a linear isomorphism ⊕i∈IR 'M is equivalent to the
specification of an indexed R-basis (i.e., linearly independent spanning set) {bi}i∈I of M .

3. Let R be an associative ring. For n ≥ 1, rigorously define the polynomial ring R[X1, . . . , Xn] as follows. The
set R[X1, . . . , Xn] consists of functions f : Zn≥0 → R that vanish at all but finitely many elements of Zn≥0; loosely

speaking, f corresponds to
P
f(J)XJ (as J varies through Zn≥0).

(i) Define an R-module structure via pointwise operations on such f , and define the product (f · g)(J) =P
J′+J′′=J f(J ′)g(J ′′) (this is a finite sum). Show that (f · g)(J) = 0 for all but finitely many J , and that this

makes R[X1, . . . , Xn] into an assocative ring containing R as a subring.
(ii) Define Xj to be the function Zn≥0 → R vanishing away from (0, . . . , 1, . . . , 0) (1 in the jth slot), which it carries

to 1. Prove that the Xj ’s are in the center of R[X1, . . . , Xn] and that each f ∈ R[X1, . . . , Xn] has a unique expression

as a finite sum
P
aJX

J with aJ ∈ R and XJ := Xj1
1 · · ·Xjn

n for J = (j1, . . . , jn).
(iii) Prove the following “universal mapping property”: if φ : R→ A is a map of associative rings and a1, . . . , an ∈ A

commute with each other and with φ(R) then there is a unique ring mapR[X1, . . . , Xn]→ A extending φ and satisfying
Xi 7→ ai for all i. In case R = Z, show that there is a unique ring map φ : Z→ A!

4. Let R be a commutative ring. The set Mn(R) of n × n matrices with entries in R has an associative R-algebra
structure given by the habitual formulas. Note that if R′ → R is a map of commutative rings then applying it on
matrix entries defines a map Mn(R′)→Mn(R) of associative rings.

(i) Define the determinant det : Mn(R)→ R by the usual formula (as a sum indexed by the symmetric group Sn).
Using the theory of determinants over a field, show that det is multiplicative when R is any domain. Then for any
m = (rij) and m′ = (r′ij) in Mn(R), use the unique ring map Z[xij , x

′
ij ] → R satisfying xij 7→ rij and x′ij 7→ r′ij to

deduce the multiplicativity of det in general (by reduction to the case of the ring Z[xij , x
′
ij ] that is a domain!).

(ii) Using the same technique, prove the Cayley-Hamilton theorem in Mn(R) for any R (by reducing it to the case
over an algebraically closed field, which you are assumed to have seen before).

(iii) Define the trace Tr : Mn(R) → R by the usual formula (rij) 7→
P
rii. Prove that Tr(mm′) = Tr(m′m) by

reducing it to the known case over a field.
(iv) Prove Cramer’s Formula over any commutative ring (reducing to the known case over a field), so in particular

m ∈Mn(R)× if and only if det(m) ∈ R×.
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