
Math 210A. Quadratic spaces over R

1. Algebraic preliminaries

Let V be a finite free module over a nonzero commutative ring F . Recall that a quadratic form
on V is a map Q : V → F such that Q(cv) = c2Q(v) for all v ∈ V and c ∈ F , and such that the
symmetric pairing V × V → F defined by (v, w)Q = Q(v + w) − Q(v) − Q(w) is bilinear. (The
explicit coordinatized description, sometimes presented as the definition, will be given shortly.) A
quadratic space over F is a pair (V,Q) consisting of a vector space V over F and a quadratic form
Q on V .

Note that (v, v)Q = Q(2v) − 2Q(v) = 2Q(v), so as long as 2 ∈ F× (i.e., F is a Z[1/2]-algebra)
we can run the procedure in reverse: for any symmetric bilinear pairing B : V × V → F , QB(v) =
B(v, v) is a quadratic form on V and the two operations Q 7→ BQ := (·, ·)Q/2 and B 7→ QB are
inverse bijections between quadratic forms on V and symmetric bilinear forms on V . Over general
rings, one cannot recover Q from (·, ·)Q. (Example: q(x) = x2 and Q(x) = 0 on V = F have
(·, ·)q = 0 = (·, ·)Q when 2 = 0 in F , yet q 6= 0.)

When 2 ∈ F×, we say that Q is non-degenerate exactly when the associated symmetric bilinear
pairing (·, ·)Q : V × V → F is perfect (that is, the associated self-dual linear map V → V ∨ defined
by v 7→ (v, ·)Q = (·, v)Q is an isomorphism, or more concretely the “matrix” of (·, ·)Q with respect
to a basis of V is invertible). In other cases (still with 2 ∈ F×) we say Q is degenerate. (There is a
definition of non-degeneracy without assuming 2 ∈ F×, but it is best to give it in terms of algebraic
geometry.)

It is traditional in cases with 2 ∈ F× in F to put more emphasis on the symmetric bilinear form
BQ = (·, ·)Q/2 rather than on the symmetric bilinear form (·, ·)Q (that is meaningful even if 2 6∈ F ).
Since we are not aiming to develop the general algebraic theory of quadratic forms over all rings
or fields, and our main applications of the theory shall be over R, we will generally restrict our
attention to the case when 2 ∈ F×.

If V has rank n > 0 we choose a basis {e1, . . . , en} of V , then for v =
∑
xiei we have

Q(v) = Q(
∑
i<n

xiei + xnen) = Q(
∑
i<n

xiei) +Q(xnen) + (
∑
i<n

xiei, xnen)Q,

and bilinearity gives the last term as
∑

i<n cinxixn with cin = (ei, en)Q ∈ F . Also, Q(xnen) = cnnx
2
n

with cnn = Q(en) ∈ F . Hence, inducting on the number of terms in the sum readily gives

Q(
∑

xiei) =
∑
i≤j

cijxixj

with cij ∈ F , and conversely any such formula is readily checked to define a quadratic form. Note
also that the cij ’s are uniquely determined by Q (and the choice of basis): the formula forces
Q(ei) = cii, and then setting xi = xj = 1 for some i < j and setting all other xk = 0 gives
Q(ei + ej) = cij + cii + cjj , so indeed cij is uniquely determined. One could therefore say that a
quadratic form “is” a homogeneous quadratic polynomial in the linear coordinates xi’s, but this
coordinatization tends to hide underlying structure and make things seem more complicated than
necessary, much like in the study of “matrix algebra” without the benefit of the theory of vector
spaces and linear maps.

Example 1.1. Suppose 2 ∈ F×, so we have seen that there is a bijective correspondence between
symmetric bilinear forms on V and quadratic forms on V ; this bijection is even linear with respect
to the evident linear structures on the sets of symmetric bilinear forms on V and quadratic forms
on V (using pointwise operations; (a1B1 +a2B2)(v, v′) = a1B1(v, v′)+a2B2(v, v′), which one checks
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is symmetric bilinear, and (a1Q1 + a2Q2)(v) = a1Q1(v) + a2Q2(v) which as a function from V to
F is checked to be a quadratic form). Let us make this bijection concrete, as follows. In class
we saw that if we fix an ordered basis e = {e1, . . . , en} of V then we can describe a symmetric
bilinear B : V × V → F in terms of the matrix [B] = e∨ [ϕ`]e = (bij) for the “left/right-pairing”
map ϕ` = ϕr from V to V ∨ defined by v 7→ B(v, ·) = B(·, v), namely bij = B(ej , ei) = B(ei, ej).
However, in terms of the dual linear coordinates {xi = e∗i } we have just seen that we can uniquely
write QB : V → F as QB(v) =

∑
i≤j cijxi(v)xj(v). What is the relationship between the cij ’s and

the bij ’s?
We simply compute: for v =

∑
xiei, bilinearity of B implies that QB(v) = B(v, v) is given by∑

xixjB(ei, ej) =
∑

i

B(ei, ei)x2
i +

∑
i<j

(B(ei, ej) +B(ej , ei))xixj =
∑

i

biix
2
i +

∑
i<j

2bijxixj ,

where bij = B(ej , ei) = B(ei, ej) = bji. Hence, cii = bii and for i < j we have cij = 2bij . Thus, for
B and Q that correspond to each other, given the polynomial [Q] for Q with respect to a choice
of basis of V , we “read off’ the symmetric matrix [B] describing B (in the same linear coordinate
system) as follows: the ii-diagonal entry of [B] is the coefficient of the square term x2

i in Q, and the
“off-diagonal” matrix entry bij for i 6= j is given by half the coefficient for xixj = xjxi appearing
in [Q] (recall 2 ∈ F×). For example, if Q(x, y, z) = x2 + 7y2 − 3z2 + 4xy + 3xz − 5yz then the
corresponding symmetric bilinear form B is computed via the symmetric matrix

[B] =

 1 2 3/2
2 7 −5/2

3/2 −5/2 −3

 .

Going in the other direction, if someone hands us a symmetric matrix [B] = (bij) then we “add
across the main diagonal” to compute that the corresponding homogeneous quadratic polynomial
[Q] is

∑
i biix

2
i +

∑
i<j(bij + bji)xixj =

∑
i biix

2
i +

∑
i<j 2bijxixj .

It is an elementary algebraic fact (to be proved in a moment) for any field F with char(F ) 6= 2
there is a basis e = {e1, . . . , en} of V with respect to which Q has the form Q =

∑
λix

2
i for

some scalars λ1, . . . , λn (some of which may vanish). In other words, we can “diagonalize” Q, or
rather the “matrix” of BQ (and so the property that some λi vanishes is equivalent to the intrinsic
property that Q is degenerate). To see why this is, we note that Q is uniquely determined by BQ

(as 2 ∈ F× in F ) and in terms of BQ this says that the basis consists of vectors {e1, . . . , en} that
are mutually perpendicular with respect to BQ (i.e., BQ(ei, ej) = 0 for all i 6= j). Thus, we can
restate the assertion as the general claim that if B : V × V → F is a symmetric bilinear pairing
then there exists a basis {ei} of V such that B(ei, ej) = 0 for all i 6= j. To prove this we may
induct on the rank, the case of rank 1 being clear. In general, if V has rank n > 1 then we can
assume B 6= 0 and in this case we claim that there exists a nonzero en ∈ V such that B(en, en) 6= 0.
Granting this, v 7→ B(en, v) = B(v, en) is a nonzero linear functional on V whose kernel must be a
hyperplane H that does not contain en, so by induction applied to B restricted to H ×H we may
find a suitable e1, . . . , en−1 that, together with en, solves the problem.

It remains to show that for a nonzero symmetric bilinear form B on a finite-dimensional vector
space V over a field F in which 2 6= 0, there must exist a nonzero v0 ∈ V such that B(v0, v0) 6= 0.
We can reconstruct B from the quadratic form QB(v) = B(v, v) via the formula

B(v, w) =
QB(v + w, v + w)−QB(v, v)−QB(w,w)

2
since 2 6= 0 in F , so if QB = 0 then B = 0. This contradiction forces QB(v0) 6= 0 for some v0 ∈ V
if B 6= 0, as desired.



3

2. Some generalities over R

Now assume that F = R. Since all positive elements of R are squares, after first passing to a
basis of V that “diagonalizes” Q (which, as we have seen, is a purely algebraic fact), we can rescale
the basis vectors using e′i = ei/

√
|λi| when λi 6= 0 to get (upon reordering the basis)

Q = x′
2
1 + · · ·+ x′

2
r − x′

2
r+1 − · · · − x′

2
r+s

for some r, s ≥ 0 with r + s ≤ dimV . Let t = dimV − r − s ≥ 0 denote the number of “missing
variables” in such a diagonalization (so t = 0 if and only Q is non-degenerate). The value of r here
is just the number of λi’s which were positive, s is the number of λi’s which were negative, and t
is the number of λi’s which vanish. The values r, s, t a priori may seem to depend on the original
choice of ordered basis {e1, . . . , en}.

To shed some light on the situation, we introduce some terminology that is specific to the case
of the field R. The quadratic form Q is positive-definite if Q(v) > 0 for all v ∈ V − {0}, and Q is
negative-definite if Q(v) < 0 for all v ∈ V −{0}. Since Q(v) = BQ(v, v) for all v ∈ V , clearly if Q is
either positive-definite or negative-definite thenQ is non-degenerate. In terms of the diagonalization
with all coefficients equal to ±1 or 0, positive-definiteness is equivalent to the condition r = n (and
so this possibility is coordinate-independent), and likewise negative-definiteness is equivalent to the
condition s = n. In general we define the null cone to be

C = {v ∈ V |Q(v) = 0},

so for example if V = R3 and Q(x, y, z) = x2 + y2 − z2 then the null cone consists of vectors
(x, y,±

√
x2 + y2) and this is physically a cone (or really two cones with a common vertex at the

origin and common central axis). In general C is stable under scaling and so if it is not the origin
then it is a (generally infinite) union of lines through the origin; for R2 and Q(x, y) = x2 − y2 it is
a union of two lines.

Any vector v not in the null cone satisfies exactly one of the two possibilities Q(v) > 0 or
Q(v) < 0, and we correspondingly say (following Einstein) that v is space-like or time-like (with
respect to Q). The set V + of space-like vectors is an open subset of V , as is the set V − of time-
like vectors. These open subsets are disjoint and cover the complement of the null cone. In the
preceding example with Q(x, y) = x2 − y2 on V = R2, V + and V − are each disconnected (as
drawing a picture shows quite clearly). This is atypical:

Lemma 2.1. The open set V + in V is non-empty and path-connected if r > 1, with r as above in
terms of a diagonalizing basis for Q, and similarly for V − if s > 1.

Proof. By replacing Q with −Q if necessary, we may focus on V +. Obviously V + if non-empty if
and only if r > 0, so we may now assume r ≥ 1. We have

Q(x1, . . . , xn) = x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s

with r ≥ 1 and 0 ≤ s ≤ n− r. Choose v, v′ ∈ V +, so xj(v) 6= 0 for some 1 ≤ j ≤ r. We may move
along a line segment contained in V + to decrease all xj(v) to 0 for j > r (check!), and similarly
for v′, so for the purposes of proving connectivity we can assume xj(v) = xj(v′) = 0 for all j > r.
If r > 1 then v and v′ lie in the subspace W = span(e1, . . . , er) of dimension r > 1 on which
Q has positive-definite restriction. Hence, W − {0} ⊆ V +, and W − {0} is path-connected since
dimW > 1. �

The basis giving such a diagonal form is simply a basis consisting of r space-like vectors, s time-
like vectors, and n− (r + s) vectors on the null cone such that all n vectors are BQ-perpencidular
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to each other. In general such a basis is rather non-unique, and even the subspaces

V+,e = span(ei |λi > 0), V−,e = span(ei |λi < 0)

are not intrinsic. For example, if V = R2 and Q(x, y) = x2 − y2 then we can take {e1, e2} to be
either {(1, 0), (0, 1)} or {(2, 1), (1, 2)}, and we thereby get different spanning lines. Remarkably, it
turns out that the values

re = |{i |λi > 0}| = dimV+,e, se = |{i |λi < 0}| = dimV−,e, te = |{i |λi = 0}| = dimV − re − se
are independent of the choice of “diagonalizing basis” e for Q. One thing that is clear right away
is that the subspace

V0,e = span(ei |λi = 0)

is actually intrinsic to V and Q: it is the set of v ∈ V that are BQ-perpendicular to the entirety of
V : BQ(v, ·) = 0 in V ∨. (Beware that this is not the set of v ∈ V such that Q(v) = 0; this latter set
is the null cone C, and it is never a linear subspace of V when it contains nonzero points.)

3. Algebraic proof of well-definedness of the signature

Theorem 3.1. Let V be a finite-dimensional R vector space, and Q a quadratic form on V . Let
e be a diagonalizing basis for Q on V . The quantities dimV+,e and dimV−,e are independent of e.

We’ll prove this theorem using algebraic methods in a moment (and a longer, but more illu-
minating, proof by connectivity considerations will be given in the next section). In view of the
intrinsic nature of the number of positive coefficients and negative coefficients in a diagonal form
for Q (even though the specific basis giving rise to such a diagonal form is highly non-unique), we
are motivated to make the:

Definition 3.2. Let Q be a quadratic form on a finite-dimensional R-vector space V . We define the
signature of (V,Q) (or of Q) to be the ordered pair of non-negative integers (r, s) where r = dimV+,e

and s = dimV−,e respectively denote the number of positive and negative coefficients for a diagonal
form of Q. In particular, r + s ≤ dimV with equality if and only if Q is non-degenerate.

The signature is an invariant that is intrinsically attached to the finite-dimensional quadratic
space (V,Q) over R. In the study of quadratic spaces over R with the fixed dimension, it is really
the “only” invariant. Indeed, we have:

Corollary 3.3. Let (V,Q) and (V ′, Q′) be finite-dimensional quadratic spaces over R with the same
finite positive dimension. The signatures coincide if and only if the quadratic spaces are isomorphic;
i.e., if and only if there exists a linear isomorphism T : V ' V ′ with Q′(T (v)) = Q(v) for all v ∈ V .

This corollary makes precise the fact that the signature and dimension are the only isomorphism
class invariants in the algebraic classification of finite-dimensional quadratic spaces over R. How-
ever, even when the signature is fixed, there is a lot more to do than mere algebraic classification.
There’s a lot of geometry in the study of quadratic spaces over R, so the algebraic classification
via the signature is not the end of the story. We now prove the corollary, granting Theorem 3.1,
and then we will prove Theorem 3.1.

Proof. Assume such a T exists. If e is a digonalizing basis for Q, clearly {T (ei)} is a diagonalizing
basis for Q′ with the same diagonal coefficients, whence Q′ has the same signature as Q. Conversely,
assume Q and Q′ have the same signatures (r, s), so there exist ordered bases e and e′ of V and
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V ′ such that in terms of the corresponding linear coordinate systems x1, . . . , xn and x′1, . . . , x
′
n we

have

Q = x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s, Q
′ = x′

2
1 + · · ·+ x′

2
r − x′

2
r+1 − · · · − x′

2
r+s.

Note in particular that

Q(
∑

aiei) =
r∑

i=1

a2
i −

s∑
i=r+1

a2
i = Q′(

∑
aie
′
i)

for all i. Thus, if T : V → V ′ is the linear map determined by T (ei) = e′i then T sends a basis to a
basis. Thus, T is a linear isomorphism, and also

Q′(T (
∑

aiei)) = Q′(
∑

aie
′
i) = Q(

∑
aiei).

In other words, Q′ ◦ T = Q, as desired. �

Now we turn to the proof of the main theorem stated above.

Proof. Let V0 = {v ∈ V |BQ(v, ·) = 0}. Let e = {e1, . . . } be a diagonalizing basis of V for Q, with
Q =

∑
λix

2
i relative to e-coordinates, where λ1, . . . , λre > 0, λre+1, . . . , λre+se < 0, and λi = 0 for

i > re + se. Clearly V0 = V0,e.
Now we consider the subspaces V+,e and V−,e. Since these subspaces (along with V0 = V0,e) are

given as the span of parts of the basis e (chopped up into three disjoint pieces, some of which may
be empty), we have a decomposition

V = V+,e ⊕ V−,e ⊕ V0

with BQ(v+, v−) = 0 for all v+ ∈ V+,e, v− ∈ V−,e (due to the diagonal shape of BQ relative to
the e-coordinates). Consider the quotient space V/V0 that has nothing to do with e. The bilinear
form BQ and the quadratic form Q are well-defined on V/V0, and the original dimensions for V±,e

coincide with the dimensions of the analogous subspaces of V/V0 using the induced quadratic form
(via Q) and induced basis arising from the part of e not in V0. In this way we are reduced to
considering the case V0 = 0, which is to say that Q is non-degenerate on V .

It is clear from the diagonal form of Q that Q(v+) ≥ 0 for all v+ ∈ V+,e with Q(v+) = 0 if
and only if v+ = 0, since Q on the subspace V+ = V+,e is presented as the sum of squares of basis
coordinates. Likewise, we have Q(v−) ≤ 0 for v− ∈ V− = V−,e, with equality if and only if v− = 0.
Hence, if we consider another diagonalizing basis e′ and the resulting decomposition V ′+ ⊕ V ′− of
V then V+ ∩ V ′− = 0 and V− ∩ V ′+ = 0 since a vector in either overlap has both non-negative and
non-positive (hence vanishing) value under the quadratic form Q that is definite on each of the
spaces V± and V ′±.

The vanishing of these overlaps gives

dimV+ + dimV ′− ≤ dimV, dimV− + dimV ′+ ≤ dimV,

but since V+ ⊕ V− = V = V ′+ ⊕ V ′− we also have

dimV+ + dimV− = dimV = dimV ′+ + dimV ′−.

Hence, dimV+ ≤ dimV ′+ and dimV− ≤ dimV ′−. Switching the roles of the two decompositions
gives the reverse inequalities, so equalities are forced as desired. �
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4. Geometric proof of well-definedness of signature

We now provide an alternative geometric approach that gives an entirely different (and rather
more interesting and vivid) proof that the signature is well-defined. The key geometric input will
be the connectivity of GL+(V ) (the subgroup of linear automorphisms with positive determinant);
such connectivity is left to the reader as an exercise with Gramm-Schmidt orthogonalization. The
proof below is somewhat longer than the largely algebraic method used above, but it brings out
the group-theoretic and topological structures that are lying in the shadows.

Let us fix a positive-definite inner product 〈·, ·〉 on V . Every bilinear form B on V may therefore
be expressed as B(v, v′) = 〈T (v), v′〉 for a unique self-map T : V → V , and symmetry (resp. non-
degeneracy) of B is the condition that T be self-adjoint (resp. an isomorphism). Note that the
formation of T depends on not only B but also on the choice of 〈·, ·〉. Consider the self-adjoint
map TQ : V → V associated to BQ and to the initial choice of inner product 〈·, ·〉 on V . (That
is, BQ(v, v′) = 〈TQ(v), v′〉 for all v, v′ ∈ V .) The condition that a basis e = {ei} diagonalize
Q is exactly the condition that 〈TQ(ei), ej〉 = 0 for all i 6= j. That is, this says that TQ(ei) is
perpendicular to ej for all j 6= i. In particular, if e were an orthogonal (e.g., orthonormal) basis
with respect to 〈·, ·〉 then the diagonalizability condition would say that e is a basis of eigenvectors
for TQ. We can now run this procedure partly in reverse: if we start with a basis e that diagonalizes
Q, then we can define an inner product 〈·, ·〉e by the condition that it makes e orthonormal, and
the resulting self-adjoint TQ,e then has its number of positive (resp. negative) eigenvalues given
by re and se when these numbers of eigenvalues are counted with multiplicity (as roots of the
characteristic polynomials of TQ,e).

We may now exploit the flexibility in the choice of the inner product to restate our problem
in terms of arbitrary inner products on V rather than in terms of diagonalizing bases for Q: for
each positive-definite inner product I = 〈·, ·〉 on V we have BQ = 〈TQ,I(·), ·〉 for a unique map
TQ,I : V → V that is self-adjoint with respect to I, and we let rI and sI denote the respective
number of positive and negative eigenvalues of TQ,I (with multiplicity). Here the spectral theorem
enters: it ensures that for any choice of I, TQ,I does diagonalize over R. Our problem can therefore
be recast as that of proving that rI and sI are independent of I. Roughly speaking, to each I
we have attached a pair of discrete (i.e., Z-valued) parameters rI and sI (using Q), and so if the
“space” of I’s is connected in a reasonable sense then discrete parameters on this space should not
jump. That is, if we can topologize the space of I’s such that rI and sI depend continuously on I
then connectivity of such a topology would give the desired result.

The existence of an orthonormal basis for any I, coupled with the fact that GL(V ) acts transi-
tively on the set of ordered bases of V (i.e., for any two ordered bases {e1, · · · , en} and {e′1, . . . , e′n}
there exists a (unique) linear automorphism L of V such that L(ei) = e′i for all i), implies that
GL(V ) acts transitively on the set of I’s. That is, if I = 〈·, ·〉 and I ′ = 〈·, ·〉′ are two inner products
on V then there exists L ∈ GL(V ) such that 〈v, v′〉 = 〈L(v), L(v′)〉′. Concretely, L carries an
ordered orthonormal basis with respect to I to one with respect to I ′. This shows slightly more:
at the expense of replacing one of the ONB vectors with its negative we can flip the sign of detL.
Hence, even the connected GL+(V ) acts transitively on the set of all I’s. This leads to:

Theorem 4.1. Let W be the finite-dimensional vector space of symmetric bilinear forms on V , en-
dowed with its natural topology as a finite-dimensional vector space over R. The subset of elements
that are positive-definite inner products is open and connected.

Proof. We first prove connectedness, and then we prove openness. There is a natural left action
of GL(V ) on W : to L ∈ GL(W ) and B ∈ W , we associate the symmetric bilinear form L.B =
B(L−1(·), L−1(·)). By fixing a basis of V and computing in linear coordinates we see that the
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resulting map
GL(V )×W →W

is continuous. In particular, if we fix B0 ∈ W then the map GL(V ) → W defined by L 7→ L.B0

is continuous. Restricting to the connected subgroup GL+(V ), it follows from continuity that the
GL+(V )-orbit of any B0 is connected in W . But if we take B0 to be an inner product then from
the definition of the action we see that L.B0 is an inner product for every L ∈ GL+(V ) (even for
L ∈ GL(V )), and it was explained above that every inner product on V is obtained from a single
B0 by means of some L ∈ GL+(V ). This gives the connectivity.

Now we check openness. This says that the “positive-definiteness” property of a symmetric
bilinear form cannot be lost under small deformation. Fix an inner product 〈·, ·〉0 on V , and let S0

be the resulting compact unit sphere. For any symmetric bilinear form B on V , it is clear that B is
positive definite if and only if the function QB = B(v, v) restricted to the compact S0 has positive
lower bound. By compactness it is obvious that for any B′ sufficiently close to B in the sense of
the natural topology on the linear space of symmetric bilinear forms, the lower bound for QB′ |S0

is near to that of QB|S0 , and so indeed B′ is positive-definite for B′ near B. �

We have now finished the proof of Theorem 4.1, so the space of inner products I on V has been
endowed with a natural connected topology, and it remains to show that the Z-valued functions I 7→
rI and I 7→ sI that count the number of positive (resp. negative) roots of TQ,I (with multiplicity!)
are continuous in I. Put another way, the dependence on I is locally constant: if I ′ is sufficiently
close to I then we claim that rI′ = rI and sI′ = sI . If we let χI denote the characteristic polynomial
of TQ,I , then the number of zeros of χI(z) is independent of I: it is exactly the dimension t = dimV0

of the space of v ∈ V such that BQ(v, ·) = 0. Hence, the polynomials χI(z)/zt ∈ C[z] have all roots
in R×, and our problem is to study the variation in the number rI of positive roots of this latter
polynomial (this determines the number of negative roots, sI = n− t− rI) as we slightly move I.
To proceed, we need to prove a lemma that is usually called “continuity of roots”:

Lemma 4.2. Let f = zn + cn−1z
n−1 + · · ·+ c0 ∈ C[z] be a monic polynomial with positive degree

n, and let {zi} be the set of distinct roots of f in C. For any ε > 0 there exists δ > 0 such that if
g = zn + bn−1z

n−1 + · · ·+ b0 ∈ C[z] is monic of degree n with |bj − cj | < δ for all j < n then each
root ρ of g in C satisfies |ρ− zi| < ε for some i.

Moreover, if ε < mini 6=i′ |zi − zi′ |/2 and µi is the multiplicity of zi as a root of f (so
∑
µi = n)

then by taking δ to be sufficiently small there are exactly µi roots ρ of g – counting with multiplicity
– such that |ρ− zi| < δ.

The astute reader will check that the proof of the lemma works if we replace C with R throughout
(which suffices for the intended applications). However, the lemma is rather much weaker when
stated over R, due to the general lack of real roots to polynomials over R.

Proof. We first fix any ε > 0 and prove the existence of δ as in the first assertion in the lemma.
Assume to the contrary that no such δ exists, so let gm = zn + bn−1,mz

n−1 + · · · + b0,m satisfy
bj,m → cj for all j < n such that there exists a root ρm ∈ C of gm such that |ρm − zi| ≥ ε for all
i. By elementary upper bounds on roots of monic polynomials in terms of lower-degree coefficients
(and the degree of the polynomial), since the |bj,m|’s are bounded it follows that the |ρm|’s are
bounded. Hence, by compactness of closed discs in C we may pass to a subsequence of the gm to
arrange that {ρm} has a limit ρ ∈ C, and by passing to the limit |ρ − zi| ≥ ε for all i. However,
bj,m → cj for all j < n, so 0 = gm(ρm)→ f(ρ). This contradicts the fact that ρ is distinct from all
of the roots zi of f in C.
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Now take ε smaller than half the minimum distance between distinct roots of f , so by taking δ
sufficiently small (in accordance with ε) each root ρ of g satisfies |ρ − zi| < ε for a unique root zi
of f when the coefficients of g satisfy |bj − cj | < δ for all j < n. This uniqueness of zi for each ρ
is due to the smallness of ε. In this way, we have a map from the set of roots of g to the set of
roots of f , assigning to each root ρ of g the unique root of f to which it is closest. We want to
prove that by taking δ sufficiently small, exactly µi roots of g (with multiplicity) are closest (even
within a distance < ε) to the root zi of f . Assuming no such δ exists, since there are only finitely
many zi’s we may use a pigeonhole argument (and relabelling of the zi’s) to make a sequence of
gm’s with bj,m → cj such that the number of roots of gm within a distance < ε from z1 is equal to
a fixed non-negative integer µ 6= µ1. Consider a monic factorization

gm(z) =
n∏

j=1

(z − ρj,m)

with |ρj,m − zi(j)| < ε for a unique i(j) for each m. There are exactly µ values of j such that
i(j) = 1.

By the same compactness argument as above, we can pass to a subsequence of the gm’s so that
{ρj,m}m≥1 has a limit ρj satisfying |ρj − zi(j)| ≤ ε. Due to the smallness of ε, zi(j) is the unique
root of f that is so close to ρj . In particular, there are µ values of j for which ρj is closer to z1
than to any other roots of f , and for all other j the limit ρj is closer to some other root of f than it
is to z1. However, since gm → f coefficient-wise it follows that f(z) =

∏n
j=1(z − ρj). Hence, there

are exactly µ1 values of j such that ρj = z1 and for all other values of j we have that ρj is equal
to zi for some i 6= 1. This contradicts the condition µ 6= µ1. �

By the lemma on continuity of roots (applied with f = χI(z)/zt and g = χI′/z
t for I ′ near I),

our problem is reduced to proving that χI′ is coefficient-wise close to χI for I ′ near to I in the
space of inner products on V . Such closeness would follow from TQ,I′ being sufficiently close to
TQ,I in Hom(V, V ), so we are reduced to proving that by taking I ′ sufficiently close to I we make
TQ,I′ as close as we please to TQ,I . If L : V ' V is a linear isomorphism carrying I to I ′ (i.e.,
〈L(v), L(v′)〉 = 〈v, v′〉′) then

〈TQ,I(v), v′〉 = BQ(v, v′) = 〈TQ,I′(v), v′〉′ = 〈L(TQ,I′(v)), L(v′)〉 = 〈(L∗L ◦ TQ,I′)(v), v′〉,

where L∗ is the I-adjoint of L, so TQ,I′ = L∗LTQ,I . Note that the initial condition on L only
determines it up to left-multiplication by an element in the orthogonal group of I, and this ambiguity
cancels out in L∗L. Hence, L∗L is well-defined in terms of I ′ and I. In particular, if we consider I
as fixed and I ′ as varying then L∗L is a GL(V )-valued function of I ′, and our problem is reduced to
proving that for I ′ sufficiently near I we have (L∗L)−1 sufficiently near the identity (as this makes
TQ,I′ = (L∗L)−1TQ,I sufficiently near TQ,I , where “sufficiently near” of course depends on I and
more specifically on TQ,I).

The identity
〈v, v′〉′ = 〈L(v), L(v′)〉 = 〈(L∗L)(v), v′〉

implies that if we fix a basis v of V and letM andM ′ be the associated invertible symmetric matrices
computing 〈·, ·〉 and 〈·, ·〉′ then M ′ = (L∗L)M and the definition of the topology on the space of
inner products says that M ′−M is very close to zero. Hence, we can restate the problem as proving
that for a fixed invertible matrix M and any matrix M ′ sufficiently close to M (entry by entry, and
so in particular M ′ is invertible as det(M ′) is near det(M) 6= 0), the matrix M(M ′)−1 is near the
identity. Working in the language of sequences (which is to say, arguing by contradiction), we want
to show that if {Ms} is a sequence of invertible matrices with Ms →M then MM−1

s →MM−1 = 1.
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This follows from the continuity of both matrix multiplication and Cramer’s formula for the inverse
of a matrix, and so completes the geometric proof of the well-definedness of the signature.

We now use the preceding geometric technique to prove a generalization of Theorem 4.1:

Corollary 4.3. Let W be the finite-dimensional vector space of symmetric bilinear forms on V ,
endowed with its natural topology as a finite-dimensional vector space over R. Let W 0 be the subset
of non-degenerate symmetric bilinear forms. The subset W 0 is open in W and it has finitely many
connected components: its connected components consist of those B’s having a fixed signature (r, s)
with r + s = dimV .

In the positive-definite case, this recovers Theorem 4.1.

Proof. In terms of the “matrix” description of points B ∈W with respect to a choice of ordered basis
of V , B is non-degenerate if and only if its associated symmetric matrix (aij) has non-vanishing
determinant. In other words, the subset W 0 ⊆ W is the non-vanishing locus of a polynomial
function in linear coordinates and so it is open. We now fix an ordered pair (r, s) of non-negative
integers satisfying r+s = dimV and we let W 0

(r,s) be the subset of points B ∈W 0 whose associated
quadratic form QB : V → R has signature (r, s). Our goal is to prove that the subsets W 0

(r,s) are
the connected components of W 0. Note that since W 0 is open in a vector space, its connected
components are open subsets.

We have to prove two things: the signature is locally constant on W 0 (and hence is constant
on connected components of W 0), and each W 0

(r,s) is connected. For connectivity, we may use the
exact same argument as in the beginning of the proof of Theorem 4.1 once we prove that any two
quadratic forms q, q′ : V → R with the same signature (r, s) are related by the action of GL+(V )
on V . The quadratic spaces (V, q) and (V, q′) are certainly isomorphic since q and q′ have the
same signature, so there exists T ∈ GL(V ) such that q′ = q ◦ T . The only potential snag is that
detT ∈ R× might be negative. To fix this, we just need to find T0 ∈ GL(V ) such that detT0 < 0
and q = q ◦ T0, as then we could replace T with T0 ◦ T ∈ GL+(V ). To find T0, we argue exactly as
in the positive-definite case: we find an ordered basis e = {e1, . . . , en} of V with respect to which q
is diagonalized, and we let T0 : V ' V be the map that negates e1 but fixes ej for all j > 1. (Check
that indeed q ◦ T0 = q.)

It remains to show that if B ∈ W 0 is a point such that QB has signature (r, s), then for all
B′ ∈ W 0 near B the non-degenerate quadratic form QB′ on V also has signature (r, s). It is
sufficient to track r, since r + s = dimV . (Warning: It is crucial here that we assume B is non-
degenerate. If B ∈ W is a degenerate quadratic form, there are B′ ∈ W that are arbitrarily close
to B and non-degenerate, so such B′ have signature not equal to that of B. For a concrete example
with V = R2, note that for small ε > 0

Bε((x1, x2), (y1, y2)) = x1y1 − εx2y2

in W 0 is very close to the degenerate B0 ∈W .)
We fix an inner product 〈·, ·〉 on V and write B = 〈T (·), ·〉 for a unique isomorphism T : V ' V

that is self-adjoint with respect to the inner product. The points B′ ∈ W have the form B′ =
〈T ′(·), ·〉 for unique self-adjoint linear maps T ′ : V ' V , and this identifies W with the subspace
of self-adjoint elements in Hom(V, V ); under this identification, W 0 corresponds to the self-adjoint
automorphisms of V . The condition that B′ be close to B in W is exactly the condition that
T ′ be close to T in Hom(V, V ) (as the linear isomorphism of W onto the subspace of self-adjoint
elements in Hom(V, V ) is certainly a homeomorphism, as is any linear isomorphism between finite-
dimensional R-vector spaces). Hence, our problem may be restated as this: we fix a self-adjoint
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isomorphism T : V ' V , and we seek to prove that any self-adjoint isomorphism T ′ : V ' V
sufficiently close to T (in Hom(V, V )) has the same number of positive eigenvalues as T (counting
with multiplicities). Consider the characteristic polynomials χT , χT ′ ∈ R[Λ]. These are monic
polynomials of the same degree n > 0, and each has all complex roots in R (by the spectral
theorem). Making T ′ approach T has the effect of making χT ′ “approach” χT for coefficients in
each fixed degree (from 0 to n − 1). Lemma 4.2 therefore gives the desired result, since χT does
not have zero as a root. �


