
Math 210A. The bar resolution

1. Motivation

Let G be a group. The functorial identification of MG with HomZ[G](Z,M) for G-modules M
(where Z is viewed as a G-module with trivial G-action) yields a unique δ-functorial identification
of the δ-functor H•(G, ·) with Ext•Z[G](Z, ·), where this Ext is computed on the category of left

Z[G]-modules. (The formalism of Ext as a derived functor of Hom works verbatim on the abelian
category of left modules over any associative ring, including the fact that this category admits
enough injectives. The existence of enough projectives is easier, via free modules.) In particular,
it follows that if we can write down an explicit Z[G]-linear resolution

· · · → F2 → F1 → F0 → Z→ 0

of Z as a left Z[G]-module with the Fj ’s all free over Z[G] then we have as δ-functors

Hn(G,M) ' Hn(HomZ[G](F•,M))

in the sense that for any short exact sequence of G-modules

0→M ′ →M →M ′′ → 0

the resulting short exact sequence of complexes (of abelian groups)

0→ HomZ[G](F•,M
′)→ HomZ[G](F•,M)→ HomZ[G](F•,M

′′)→ 0

(short exact since each Fj is Z[G]-projective!) yields a long exact homology sequence

. . . // Hn(HomZ[G](F•,M
′)) // Hn(HomZ[G](F•,M)) // Hn(HomZ[G](F•,M

′′))

δ
��

. . . Hn+1(HomZ[G](F•,M
′))oo

that is the long exact sequence in group cohomology.
The aim of this handout is twofold. First, we will construct an explicit such resolution of Z,

called the bar resolution (for reasons I do not know), and secondly we will work out in terms of this
resolution what the connecting maps are in the above exact sequence. In particular, we will make
it explicit in low degree (degrees ≤ 2), as this is very useful in applications.

2. The resolution

Define F−1 = Z (with trivial G-action), F0 = Z[G] (with standard basis vector sometimes
denoted (∅)), and for j > 0

Fj =
⊕
g∈Gj

Z[G](g).

In other words, Fj is the free left Z[G]-module on the set Gj (with G0 understood to be the 1-
point set {∅}). We write elements of Z[G] in the form of finite sums

∑
g∈G cg[g] with cg ∈ Z

(vanishing for all but finitely many g ∈ G). In terms of this notation, to define a Z[G]-linear map
dj : Fj → Fj−1 for j ≥ 0 it is the same to define a map of sets ∆j : Gj → Fj−1 for each j ≥ 0 (and
then dj(

∑
i xi(gi)) =

∑
i xi∆j(gi) for finitely many elements xi ∈ Z[G] and g

i
∈ Gj).
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We define ∆0 : G0 → F−1 = Z to carry the single element of G0 to 1, or in other words
(recalling that Z is equipped with the trivial G-action!) the Z[G]-linear map d0 : Z[G]→ Z is the
“augmentation” map ∑

g∈G
cg[g] 7→

∑
g∈G

cg

carrying each [g] to 1. We define ∆1 : G1 → F0 = Z[G] to be the map (g) 7→ [g]− [1] for all g ∈ G,
or equivalently

d1(
∑

xi[gi]) =
∑

xi([gi]− [1])

for finitely many elements gi ∈ G and xi ∈ Z[G]. For j > 1, we define ∆j : Gj → Fj−1 to be

(2.1) ∆j(g1, . . . , gj) = [g1] · (g2, . . . , gj) +

j−1∑
i=i

(−1)i(g1, . . . , gigi+1, . . . , gj) + (−1)j(g1, . . . , gj−1)

for each ordered j-tuple (g1, . . . , gj) ∈ Gj .
It is clear that the augmentation map d0 : Z[G]→ Z is surjective, so there are two things to be

checked:

(i) dj−1 ◦ dj = 0 for all j > 0 (i.e., “d2 = 0”), so F• is a complex;
(ii) this complex is exact in all degrees (so it is a free Z[G]-module resolution of F−1 = Z).

The proof of (i) will be an non-obvious computation with lots of internal cancellations. The proof of
(ii) will involve the usual trick of building “homotopy operators” hj : Fj → Fj+1 for all j ≥ −1 such
that dj+1 ◦ hj + hj−1 ◦ dj = idFj for all j ≥ 0 (“dh+ hd = 1”), so exactness will hold in all degrees
≥ 0 (and exactness in degree −1 was already noted, namely the surjectivity of the augmentation
map Z[G]→ Z for the group ring Z[G]).

Proposition 2.1. For all j ≥ 1, dj−1 ◦ dj = 0.

Proof. We first verify the cases j ≤ 2 by hand (since the assertions involve F0, whereas the “uniform”
definition of Fi was only for i > 0, depending on one’s thoughts about the convention for defining
G0 or games with the empty set). Then we handle all j > 2 by a uniform argument.

For j = 1, we seek to compose d1 : F1 → F0 = Z[G] with the augmentation map d0 : Z[G]→ Z.
To prove the vanishing of this Z[G]-linear composite map, it suffices to check on basis elements for
F1, such as the elements (g) for g ∈ G. By definition, for each g ∈ G we have d1((g)) = [g]− [1] ∈
Z[G], and this is visibly killed by the augmentation map.

Now consider j = 2. Once again it suffice to verify the vanishing of d1 ◦ d2 : F2 → F0 = Z[G]
when restricted to a Z[G]-basis of F2, such as the elements (g, g′) for g, g′ ∈ G. By definition
d2((g, g

′)) = ∆1(g, g
′) = [g] · (g′)− (gg′) + (g), and the Z[G]-linear d1 carries this to

[g] ·∆1(g
′)−∆1(gg

′) + ∆1(g) = [g] · ([g′]− [1])− ([gg′]− [1]) + ([g]− [1])

= ([gg′]− [g])− ([gg′]− [1]) + ([g]− [1])

= 0,

as desired.
Finally, consider j > 2. A direct computation is somewhat messy (due to the need to treat various

“boundary terms” in a special way), so we shall instead make an isomorphism with another Z[G]-
linear complex for which the computation is simpler. Loosely speaking, we switch to the viewpoint
of “homogeneous cochains”. More precisely, we define the complex E• with Ej = Z[Gj+1] for j ≤ 0
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(the free abelian group on the set Gj+1), equipped with a Z[G]-module structure via the diagonal
action:

[g] · (g0, . . . , gj) = (gg0, . . . , ggj).

To define an isomorphism of Z[G]-modules Fj ' Ej , we first note that every element of Ej has the
unique form ∑

g∈G

∑
g∈Gj

cg,g(g, g) =
∑
g∈Gj

(
∑
g∈G

cg,g[g])(1, g−1g)

where cg,g = 0 for all but finitely many pairs (g, g) ∈ G×Gj = Gj+1. This says exactly that Ej is

a free left Z[G]-module with basis given by elements of Gj+1 whose initial component is 1. Thus,
to define an isomorphism of Z[G]-modules φj : Fj ' Ej for j ≥ 0 it suffices to define a bijection
between their indicated bases. We shall use the bijection

φj : (g1, . . . , gj) 7→ (1, g1, g2g2, . . . , g1g2 · · · gj).
(This is bijective since G is a group!)

Under the isomorphisms φi for i ≥ 0, for j ≥ 1 we claim that the Z[G]-linear map dj : Fj →
Fj−1 goes over to the Z[G]-linear map δj : Ej → Ej−1 defined on the standard Z-basis elements
(g0, . . . , gj) by

(2.2) δj((g0, . . . , gj)) =

j∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gj)

(where, as usual, x̂ means “omit x”). Indeed, δj as just defined is visibly Z[G]-linear (check!), so
its agreement with dj reduces to a comparison on the Z[G]-bases. More specifically, for j ≥ 1 the
element (g1, . . . , gj) ∈ Fj is carried by φj over to the element

(1, g1, g1g2, . . . , g1g2 · · · gj) ∈ Ej
that in turn is carried by δj over to

(g1, g1g2, . . . , g1g2 · · · gj) +

j−1∑
i=1

(−1)i(1, . . . , (g1 · · · gi)∧, . . . , g1g2 · · · gj) +

(−1)j(1, g1, g1g2, . . . , g1g2 · · · gj−1).
This is exactly

[g1] · φj(g2, . . . , gj) +

j−1∑
i=1

(−1)iφj−1(g1, . . . , gigi+1, . . . , gj) + (−1)jφj−1(g1, . . . , gj−1),

which is φj−1(∆j(g1, . . . , gj)) and so proves that δj ◦ φj = φj−1 ◦ dj for all j ≥ 1.
To prove d2 = 0 in degrees > 2 it is the same to prove δ2 = 0 in degrees > 2. We can just as

readily prove δ2 = 0 in degrees ≥ 2: it is a trivial “alternating sum cancellation” computation with
the clean formula (2.2) to check (do it!) that δj−1 ◦ δj = 0 for all j ≥ 2. �

The Z-linear (not Z[G]-linear!) homotopy operators hj : Fj → Fj+1 for j ≥ −1 satisfying
hj−1 ◦ dj + dj+1 ◦ hj = 1 for j ≥ 0 shall be defined by their values on the Z-basis (not Z[G]-basis!)
elements [g0](g1, . . . , gj) via the concatenation operation:

hj([g0](g1, . . . , gj)) = (g0, g1, . . . , gj).

Since the meaning of this expression may be unclear for j ≤ 0, we explicitly define h−1 : Z →
Z[G] = F0 by 1 7→ (∅) = [1] and h0 : Z[G]→ F1 by [g] 7→ (g) ∈ F1 for g ∈ G.
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Proposition 2.2. For all j ≥ 0, hj−1 ◦ dj + dj+1 ◦ hj = idFj .

Proof. We make a direct computation for j = 0 (since we have to use h−1), and then for j ≥ 1
we carry out a uniform computation using the Ej ’s rather than the Fj ’s (since the hj ’s are only
Z-linear rather than Z[G]-linear, and the E’s have a “clean” Z-basis whereas the F ’s only have a
“clean” Z[G]-basis).

For j = 0, the endomorphism hd + dh of F0 = Z[G] carries [g] to

h−1(d0([g])) + d1(h0([g])) = h−1(1) + d1((g)) = [1] + ([g]− [1]) = [g].

To handle j > 0, we first compute how our isomorphisms φi : Fi ' Ei for i ≥ 0 transfer hi : Fi →
Fi+1 into a map h′i : Ei → Ei+1 for i ≥ 0. We claim that

h′i(g0, . . . , gi) = (1, g0, . . . , gi).

Since the isomorphism F0 ' E0 is the identity endomorphism of Z[G] whereas the isomorphism

F1 =
⊕
g∈G

Z[G](g) ' Z[G×G] = E1

is [g′] · (g) 7→ [g′] · (1, g) = (g′, g′g), clearly h′0 : E0 → E1 is (g) 7→ (1, g), as desired. For i > 0 we
likewise have that the Z-basis elements [g0] · (g1, . . . , gi) ∈ Fi correspond under φi to

[g0]φi(g1, . . . , gi) = (g0, g0g1, . . . , g0g1 · · · gi)
whereas hi([g0](g1, . . . , gi)) = (g0, g1, . . . , gi) corresponds under φi to (1, g0, g0g1, . . . , g0 · · · gi). Thus,

h′i(g0, g0g1, . . . , g0g1 · · · gi) = (1, g0, g0g1, . . . , g0 · · · gi)
for all g0, . . . , gi ∈ G. Since G is a group, this establishes the asserted formula for h′i : Ei → Ei+1

for all i ≥ 0.
It now suffices to show that h′j−1◦δj+δj+1◦hj = idEj for all j ≥ 1. This is a simple computation:

the Z-basis element (g0, . . . , gj) is carried to

j∑
i=0

(−1)ih′j−1(g0, . . . , ĝi, . . . , gj) + δj+1(1, g0, . . . , gj),

which is equal to

j∑
i=0

(−1)i(1, g0, . . . , ĝi, . . . , gj) + (g0, . . . , gj) +

j+1∑
i=1

(−1)i(1, g0, . . . , ĝi−1, . . . , gj).

Reindexing the final sum by replacing i with i−1 makes the two sums cancel termwise, so the only
term that survives is (g0, . . . , gj), as desired. �

3. Computations

Now we apply the bar resolution to compute group cohomology. The complex HomZ[G](F•,M)
has jth term

HomZ[G](Fj ,M) = Map(Gj ,M)

identified with the set of M -valued functions f : Gj → M of ordered j-tuples in G. We write
[f ] : Fj →M to denote the Z[G]-linear map corresponding to the function f : Gj →M . For j ≥ 1,
the differential

dj,M : Map(Gj ,M) = HomZ[G](Fj ,M)→ HomZ[G](Fj+1,M) = Map(Gj+1,M)
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carries a function f : Gj →M to the function

(g1, . . . , gj+1) 7→ [f ](dj+1((g1 . . . , gj+1))) = [f ](∆j+1(g1, . . . , gj+1)).

Using the Z[G]-linearity of [f ], we obtain

(df)(g1, . . . , gj+1) = g1 · f(g2, . . . , gj+1) +

j−1∑
i=0

(−1)if(g1, . . . , gigi+1, . . . , gj+1) + (−1)jf(g1, . . . , gj),

where the first term on the right side uses the G-action on M . For example, if j = 1 then we have

(df)(g, g′) = g · f(g′)− f(gg′) + f(g)

whereas if j = 2 we have

(df)(g1, g2, g3) = g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2).

With appropriate conventions regarding the empty set, this formula for df ∈ Map(Gj+1,M)
also works for j = 0. Explicitly, for an element f ∈ HomZ[G](F0,M) = HomZ[G](Z[G], ) = M =

Map(G0,M) corresponding to m ∈M ,

(3.1) (df)(g) = g ·m−m
in Map(G,M) = HomZ[G](F1,M).

By definition, for j > 0 we have Hj(G,M) = Zj(G,M)/Bj(G,M) where

Zj(G,M) = ker(dj,M ) = {f : Gj →M |df : Gj+1 →M vanishes},

Bj(G,M) = im(dj−1,M ) = {f : Gj →M | f = dh for some h : Gj−1 →M}
(with the understanding for j = 1 that h : G0 → M means just an element of M). Functions
in Zj(G,M) are called j-cocycles on G valued in M , and functions in Bj(G,M) are called j-
coboundaries on G valued in M . Elements of Zj(G,M) which represent the same class in Hj(G,M)
are called cohomologous.

Example 3.1. The 1-cocycles and 1-coboundaries are respectively

Z1(G,M) = {f : G→M | f(gg′) = g · f(g′) + f(g)}, B1(G,M) = {g 7→ gm−m |m ∈M}.
Classically elements of Z1(G,M) were called crossed homomorphisms (as they are almost like
homomorphisms, except for the intervention of the G-action in a slightly asymmetric manner).

A 2-cocycle on G with values in M is a function f : G2 →M that satisfies

g · f(g′, g′′) + f(g, g′g′′) = f(gg′, g′′) + f(g, g′).

Classically these were called factor systems. Such 2-variable functions first arose early in the 20th
century (long before the development of group cohomology!) in the attempts by Noether, Brauer,
Dickson, and others to construct and classify certain kinds of finite-dimensional associative algebras
over fields (with G a Galois group). The condition of factor systems being cohomologous was known
in those days, as it is exactly the condition that the associative algebras arising from two factor
systems are abstractly isomorphic.

We finish this handout by computing the connecting map ∂j : Hj(G,M ′′)→ Hj+1(G,M ′) arising
from a short exact sequence

0→M ′ →M →M ′′ → 0

of G-modules, especially the case j = 0 (which comes up all the time in examples). Let’s first work
out j = 0 by hand, and then treat j > 0 in a uniform manner. This is all just an unwinding of the
general snake lemma method by which δ-functors are built via acyclic resolutions.
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The case j = 0. For m′′ ∈ M ′′G, we can pick a lift m ∈ M , but usually it is not G-invariant.
However, gm−m has image gm′′−m′′ = 0 in M ′′, so it is valued in ker(M →M ′′) = M ′. That is,
we get a function G→M ′ via g 7→ gm−m. This M ′-valued function on G is not a 1-coboundary!
When viewed with values in the module M it is a 1-cobounary, but from the viewpoint of M ′ is
may not be a 1-coboundary (since m ∈M , and usually m 6∈M ′).

The M ′-valued function g 7→ gm −m is a 1-cocycle. Indeed, this can be verified by hand, but
it is slicker to observe that it suffices to check the 1-cocycle identity in the Z[G]-module M ′ after
applying the Z[G]-linear injection into M , where this function is a 1-coboundary (and hence a 1-
cocycle, so it satisfies the 1-cocycle identity). We claim that the class in H1(G,M ′) of the 1-cocycle
g 7→ gm−m ∈M ′ is ∂0(m

′′).
[In particular, this cohomology class only depends on m′′, which is to say that changing m has

the effect of changing our 1-cocycle by a 1-coboundary. But this latter property is clear by hand: to
change m lifting m′′ amounts to replacing m with m+m′ for m′ ∈M ′, in which case the function
g 7→ gm −m changes by adding the function g 7→ gm′ −m′ that is visibly in B1(G,M ′), not just
in Z1(G,M ′).]

To verify our assertion concerning ∂0(m
′′), we note that Map(G0,M)→ Map(G0,M ′′) carries m

to m′′, so the snake lemma method computes ∂0(m
′′) by pushing m ∈ Map(G0,M) into Map(G1,M)

via the differential d0. By (2.2), this gives the function f : G1 → M defined by g 7→ gm − m.

The snake method ensures (as we have already noted by hand, using that m′′ ∈ M ′′G) that this
element of Map(G1,M) lies in Map(G1,M ′), and as such must be in Z1(G,M ′) and represents
∂0(m

′′) ∈ H1(G,M ′). This completes the proof of the correctness of our description of ∂0(m
′′) via

1-cocycles on G valued in M ′.
The case j ≥ 1. Fix j ≥ 1 and pick a j-cocycle f : Gj →M ′′ representing a class ξ ∈ Hj(G,M ′′).

To compute its image in Hj+1(G,M ′) under the connecting map, the snake method goes as follows.
The natural map Map(Gj ,M) → Map(Gj ,M ′′) is surjective, and more specifically f lifts to a

map f̃ : Gj → M where f̃(g1, . . . , gj) is an arbitrary choice of lift into M of f(g1, . . . , gj) ∈ M ′′.
Applying the differential dj,M : Map(Gj ,M)→ Map(Gj+1,M), we get the function

(g1, . . . , gj+1) 7→ g1 · f̃(g2, . . . , gj+1) +

j∑
i=1

(−1)if̃(g1, . . . , gigi+1, . . . , gj+1) + (−1)j+1f̃(g1, . . . , gj).

The general theory ensures many things:

(i) this function is necessarily valued in M ′ (because dj,Mf = 0!),

(ii) the resulting element of Map(Gj+1,M ′) lies in Zj+1(G,M ′) (because dj+1,M ◦ dj,M f̃ = 0),
(iii) the class of this (j + 1)-cocycle in Hj+1(G,M ′) represents ∂j(ξ) (so it is independent of the

original representative j-cocycle f for ξ).


