
Math 210A. Duality for finite abelian groups

Let G be a finite abelian group, and k an algebraically closed field with char(k) - #G. The
traditional case is k = C. With k understood (and fixed), we define the dual group

Ĝ = Hom(G, k×).

This is a group via pointwise operations, so it is clearly abelian. If n kills G (e.g., n = #G) then
every homomorphism χ : G→ k× lands inside of the finite abelian group µn(k) of nth roots of unity
in k. Hence, Ĝ = Hom(G,µn(k)). This is visibly a finite group. In this handout, we show that the
relationship between G and Ĝ is very symmetric, akin to that between a finite-dimensional vector
space and its linear dual: we will show that Ĝ is non-canonically isomorphic to G, and that the
natural “double duality” map G→ (Ĝ)∧ = Hom(Ĝ, k×) is an isomorphism. (Note that this double-
duality map is a homomorphism; the argument is similar to the proof that the “double-duality”
map for a vector space is linear, and it is left to the reader to verify.)

First we check that non-canonically Ĝ ' G. If G = G′ ×G′′ then

Ĝ = Hom(G′ ×G′′, k×) = Hom(G′, k×)×Hom(G′′, k×) = Ĝ′ × Ĝ′′.
Hence, to prove the non-canonical isomorphism result for G it suffices to do the same for G′ and
G′′. In view of the structure theorem for finite abelian groups, this reduces us to the case when G is
cyclic, say of size d ≥ 1 (with char(k) - d). That is, we can assume G = Z/dZ. But then Hom(G,M)
is the d-torsion in M for any abelian group M (why?), so taking M = k× gives Ĝ = µd(k). This is
the set of dth roots of unity in k, which is to say roots of the polynomial Xd − 1 that is separable
of degree d. There are d such roots, since k is algebraically closed.

To complete the proof that Ĝ is non-canonically isomorphic to G, our task is to prove that µd(k)
is cyclic. If k = C this is geometrically clear from the visualization of dth roots of unity as vertices
of a regular d-gon inscribed in the unit circle. For general k, we proceed algebraically as follows. If
H is any finite abelian group, by the structure theorem for such groups we see that if H is not cyclic
then for some prime ` there is a subgroup of the form (Z/`Z)2. In particular, the subgroup H[`] of
`-torsion in H has size at least `2 > `. But for H = µd(k) and any prime `|d, H[`] is contained in
the group µ`(k) that has size `. Hence, we have reached a contradiction, so µd(k) is cyclic.

Finally, we establish the “double duality” isomorphism. In view of the non-canonical isomorphism
between a finite abelian group and its dual, we see that #G = #Ĝ for any G. Hence, G and its
double-dual have the same size. Thus, to prove that the natural double-duality homomorphism
G→ (Ĝ)∧ is an isomorphism it suffices to prove injectivity. In other words, if g ∈ G and χ(g) = 1
for all χ ∈ Ĝ then we claim g = 1. Equivalently, if g 6= 1 then we need to construct some χ ∈ Ĝ such
that χ(g) 6= 1. Consider a decomposition G '

∏
Ci with cyclic Ci. Since g 6= 1, it has nontrivial

projection gi ∈ Ci for some i. If we can handle the cyclic case then there is a character ψ : Ci → k×

such that ψ(gi) 6= 1, so composing ψ with the projection G� Ci defines the desired χ. Hence, we
may assume G is cyclic, say G = Z/nZ with char(k) - n. But µn(k) is cyclic of size n, so we can
choose an isomorphism of groups χ : G ' µn(k). This satisfies χ(g) 6= 1 for all nontrivial g ∈ G.

Remark 0.1. By definition, G  Ĝ carries short exact sequences to left-exact sequence of finite
abelian groups. But by counting sizes, we see that the resulting left-exact sequences are actually
exact, so dualizing is an exact functor. Explicitly, if H ⊆ G is a subgroup then (G/H)∧ is identified
with the group ker(Ĝ→ Ĥ) of characters χ of G such that χ|H = 1.
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