MATH 210A. DUALITY FOR FINITE ABELIAN GROUPS

Let G be a finite abelian group, and k an algebraically closed field with char(k) $\nmid \#G$. The traditional case is $k = \mathbb{C}$. With k understood (and fixed), we define the *dual group*

$$G = \operatorname{Hom}(G, k^{\times}).$$

This is a group via pointwise operations, so it is clearly abelian. If n kills G (e.g., n = #G) then every homomorphism $\chi: G \to k^{\times}$ lands inside of the finite abelian group $\mu_n(k)$ of nth roots of unity in k. Hence, $\widehat{G} = \operatorname{Hom}(G, \mu_n(k))$. This is visibly a finite group. In this handout, we show that the relationship between G and \widehat{G} is very symmetric, akin to that between a finite-dimensional vector space and its linear dual: we will show that \widehat{G} is non-canonically isomorphic to G, and that the natural "double duality" map $G \to (\widehat{G})^{\wedge} = \operatorname{Hom}(\widehat{G}, k^{\times})$ is an isomorphism. (Note that this doubleduality map is a homomorphism; the argument is similar to the proof that the "double-duality" map for a vector space is linear, and it is left to the reader to verify.)

First we check that non-canonically $\widehat{G} \simeq G$. If $G = G' \times G''$ then

$$\widehat{G} = \operatorname{Hom}(G' \times G'', k^{\times}) = \operatorname{Hom}(G', k^{\times}) \times \operatorname{Hom}(G'', k^{\times}) = \widehat{G'} \times \widehat{G''}.$$

Hence, to prove the non-canonical isomorphism result for G it suffices to do the same for G' and G''. In view of the structure theorem for finite abelian groups, this reduces us to the case when G is cyclic, say of size $d \ge 1$ (with $\operatorname{char}(k) \nmid d$). That is, we can assume $G = \mathbf{Z}/d\mathbf{Z}$. But then $\operatorname{Hom}(G, M)$ is the *d*-torsion in M for any abelian group M (why?), so taking $M = k^{\times}$ gives $\widehat{G} = \mu_d(k)$. This is the set of *d*th roots of unity in k, which is to say roots of the polynomial $X^d - 1$ that is *separable* of degree *d*. There are *d* such roots, since *k* is algebraically closed.

To complete the proof that \widehat{G} is non-canonically isomorphic to G, our task is to prove that $\mu_d(k)$ is cyclic. If $k = \mathbb{C}$ this is geometrically clear from the visualization of dth roots of unity as vertices of a regular d-gon inscribed in the unit circle. For general k, we proceed algebraically as follows. If H is any finite abelian group, by the structure theorem for such groups we see that if H is not cyclic then for some prime ℓ there is a subgroup of the form $(\mathbb{Z}/\ell\mathbb{Z})^2$. In particular, the subgroup $H[\ell]$ of ℓ -torsion in H has size at least $\ell^2 > \ell$. But for $H = \mu_d(k)$ and any prime $\ell|d, H[\ell]$ is contained in the group $\mu_\ell(k)$ that has size ℓ . Hence, we have reached a contradiction, so $\mu_d(k)$ is cyclic.

Finally, we establish the "double duality" isomorphism. In view of the non-canonical isomorphism between a finite abelian group and its dual, we see that $\#G = \#\widehat{G}$ for any G. Hence, G and its double-dual have the same size. Thus, to prove that the natural double-duality homomorphism $G \to (\widehat{G})^{\wedge}$ is an isomorphism it suffices to prove injectivity. In other words, if $g \in G$ and $\chi(g) = 1$ for all $\chi \in \widehat{G}$ then we claim g = 1. Equivalently, if $g \neq 1$ then we need to construct some $\chi \in \widehat{G}$ such that $\chi(g) \neq 1$. Consider a decomposition $G \simeq \prod C_i$ with cyclic C_i . Since $g \neq 1$, it has nontrivial projection $g_i \in C_i$ for some i. If we can handle the cyclic case then there is a character $\psi : C_i \to k^{\times}$ such that $\psi(g_i) \neq 1$, so composing ψ with the projection $G \twoheadrightarrow C_i$ defines the desired χ . Hence, we may assume G is cyclic, say $G = \mathbb{Z}/n\mathbb{Z}$ with char $(k) \nmid n$. But $\mu_n(k)$ is cyclic of size n, so we can choose an isomorphism of groups $\chi : G \simeq \mu_n(k)$. This satisfies $\chi(g) \neq 1$ for all nontrivial $g \in G$.

Remark 0.1. By definition, $G \rightsquigarrow \widehat{G}$ carries short exact sequences to left-exact sequence of finite abelian groups. But by counting sizes, we see that the resulting left-exact sequences are actually *exact*, so dualizing is an exact functor. Explicitly, if $H \subseteq G$ is a subgroup then $(G/H)^{\wedge}$ is identified with the group ker $(\widehat{G} \to \widehat{H})$ of characters χ of G such that $\chi|_H = 1$.