
Math 201A. A cool application of Gram-Schmidt to prove connectedness

1. Motivation and background

Let V be an n-dimensional vector space over R, and define GL(V ) to be the set of invertible
linear maps V ' V (the notation stands for General Linear). In other words, this is the open locus
in HomR(V, V ) where the continuous (multi-variate) “polynomial” function det : HomR(V, V )→ R
is non-vanishing. When V = Rn, this is the set of invertible n by n matrices in Matn×n(R), and
it is usually called GLn(R) rather than GL(Rn).

For example, when n = 2 and we imagine the 4-dimensional space Mat2×2(R) as coordinatized
by matrix entries a, b, c, d, then GL2(R) is the complement of the hypersurface in R4 cut out by
the condition ab− cd = 0 in a 4-dimensional space. It’s quite “big”.

We make GL(V ) into a metric space by viewing it as an open in the vector space HomR(V, V ).
The choice of metric induced by a norm on the ambient vector space HomR(V, V ) is well-defined
up to a bounded constant, so the concepts of open set, closed set, limit, etc. in GL(V ) are the same
regardless of any choice of linear coordinates on V used to identify the situation with GLn(R) in
which two matrices are “close” when the corresponding matrix entries (ij in each) are close in R.

Consider the determinant map

det : GL(V )→ R− {0}.
Being a polynomial function in matrix entries relative to a choice of basis of V , this is visibly
continuous and trivially surjective (think of diagonal matrices). But the target is disconnected, so
the source cannot be connected. More specifically,

U+ = {T ∈ GL(V ) | detT < 0}, U− = {T ∈ GL(V )) | detT > 0}
is a non-trivial separation of GL(V ). But is this the only obstruction to connectedness? More
specifically, if we define

GL+(V ) = {T ∈ GL(V ) | detT > 0},
then is this connected? In fact, we will even prove it is path connected. This is hard to “see” right
away, but the proof will exhibit an explicit geometrically constructed “path of matrices” joining up
the identity map to any chosen T with positive determinant. The method will essentially amount
to a vivid geometric perspective on the Gram-Schmidt process.

A related connectedness question concerns the orthogonal matrices. Suppose we fix a choice of
an inner product 〈·, ·〉 on V . We define

O(V ) = O(V, 〈·, ·〉) = {T ∈ HomR(V, V ) | 〈T (v), T (v′)〉 = 〈v, v′〉},
called the orthogonal group for the data (V, 〈·, ·〉), though we usually suppress mention of 〈·, ·〉 in
the notation. In other words, if T ∗ is the adjoint map then the condition is TT ∗ = 1 (which forces
T ∗T = 1). In concrete terms, if we choose an orthonormal basis to identify V with Rn in such a
way that our inner product goes over to the standard one, then O(V ) becomes the “explicit”

On(R) = {M ∈ GLn(R) |MM t = 1}.
This is a closed subset of GLn(R) since the condition MM t = 1 amounts to a system of n2

polynomial conditions on the matrix entries of M . For example, when n = 2 with

M =
(
a b
c c

)
we get the conditions

a2 + b2 = 1, c2 + d2 = 1, ac+ bd = 0.
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The elements of On(R) are the linear maps from Rn to Rn which preserve the standard inner
product on Rn. We know that all eigenvalues of such a matrix over C (where it is unitary) have
to have absolute value 1.

For any M ∈ Matn×n(R) we know that the real number Det(M) has absolute value equal to
|
∏
λi| where {λi} is the set of eigenvalues of M in C (counting multiplicities in terms of roots of

the characteristic polynomial). Since |λi| = 1 for all i in the orthogonal (or rather, unitary) case,
we see that |

∏
λi| = 1 for such matrices, so the determinant function on On(R) has values in {±1}.

As with GL(V ), the sign of the (continuous) determinant gives an evident non-trivial separation.
Let’s restrict our attention to

SO(V ) = SO(V, 〈·, ·〉) = {T ∈ O(V ) | detT = 1} = O(V ) ∩GL+(V ).

Here, S stands for “special”, which is the usual terminilogy for when one imposes a “det = 1”
condition (e.g., SL(V ) denotes the elements in GL(V ) with determinant 1, called the special linear
group of V ). Is SO(V ) connected? In fact, we’ll prove it is path connected.

Actually, the method of proof of the two connectedness results will be to first prove path connect-
edness of SO(V ), and to then use the choice of an inner product and the Gram-Schmidt algorithm
to deduce from this that GL(V ) is path connected. In order to motivate things with less clutter,
we will first reduce the case of GL(V ) to that of SO(V ), and then we’ll handle the latter case.

2. Path connectedness of GL+(V )

Let T ∈ GL+(V ) be an element. We seek to find a continuous path in GL+(V ) which links up
T to the identity map. We now fix a choice of inner product on V , which can certainly be done (in
lots of ways), so we get a corresponding orthogonal group O(V ). What we’ll actually do is use the
Gram-Schmidt algorithm to find a path in GL(V ) joining up T to an element in SO(V ). Then the
path connectedness of the latter (which we’ll prove in the next section) will finish the job. Here
is the basic idea. Choose an orthonormal basis {e1, . . . , en} of V . Let vj = T (ej) be the image
of the jth basis vector under the linear map T . Let {v′1, . . . , v′n} be the orthonormal basis which
results from applying the Gram-Schmidt process to the vj ’s. Let T ′ : V → V be the linear map
which sends ej to v′j (so T ′ is an isomorphism). We will “continuously deform” the ordered set
{v1, . . . , vn} into {v′1, . . . , v′n} using the Gram-Schmidt formulas, and this will lead to a path joining
up T to T ′ inside of GL+(V ). We’ll then show that T ′ ∈ SO(V ), so we’ll be done (or rather, will
be reduced to path-connectedness of SO(V )).

More explicitly, consider the formulas which define the Gram-Schmidt algorithm. We first run
through without normalizing:

w′1 = v1,

w′j = vj −
j−1∑
i=1

〈vj , w
′
i〉

〈w′i, w′i〉
w′i

for 2 ≤ j ≤ n. Thus, v′j = w′j/||w′j || for 1 ≤ j ≤ n. We now define visibly continuous functions

wi : [0, 1]→ V

as follows:

w1(t) = v1

wj(t) = vj − t
j−1∑
i=1

〈vj , w
′
i〉

〈w′i, w′i〉
w′i
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Note that for every t and 1 ≤ i ≤ n we have

span(w1(t), . . . , wi(t)) = span(v1, . . . , vi),

so {w1(t), . . . , wn(t)} is a basis of V for all t. Also, for t = 0 this is the original basis {v1, . . . } and
for t = 1 it is the non-normalized basis {w′1, . . . }.

Making one final modification, if we define functions uj : [0, 1]→ V by the rule

uj(t) =
wj(t)
||wj(t)||t

then each uj is continuous (why?) with {u1(t), . . . , un(t)} a basis of V for all t; this yields the
original basis {v1, . . . } for t = 0 and the Gram-Schmidt output {v′1, . . . } for t = 1. We conclude
that

[0, 1]→ V × · · · × V = V n

defined by
t 7→ (u1(t), . . . , un(t))

is a “continuous system of bases” which moves from {v1, . . . , vn} to {v′1, . . . }. Geometrically, we
visualize a collection of n arrows sticking out of the original which move continuously from {vi} to
{v′i}.

Now recall we began with a linear map T : V ' V determined by the condition T (ej) = vj and
we also defined a linear map T ′ : V → V by the property T ′(ej) = v′j . Note that T ′ carries an
orthonormal basis to an orthonormal basis. This at least makes T ′ orthogonal, thanks to:

Lemma 2.1. Let T ′ : (V, 〈·, ·〉) → (V ′, 〈·, ·〉′) be a map between finite-dimensional inner product
spaces, with 〈T ′(ei), T ′(ej)〉′ = 〈ei, ej〉 for a basis {e1, . . . , en} of V . Then T ′ respects the inner
products. That is,

〈T ′(v1), T ′(v2)〉′ = 〈v1, v2〉′

for all v1, v2 ∈ V .

Proof. The pairings
(v1, v2) 7→ 〈T ′(v1), T ′(v2)〉′, (v1, v2) 7→ 〈v1, v2〉

are bilinear forms on V which, by hypothesis, coincide on pairs from a basis. But by bilinearity, a
bilinear form is uniquely determined by its values on pairs from a basis. Thus, these two bilinear
forms coincide, and that’s what we needed to prove.

�

Although this lemma shows that T ′ is orthogonal, it isn’t immediately clear that detT ′ = 1 (as
opposed to detT ′ = −1). The fact that T ′ ∈ SO(V ), which is to say detT ′ > 0, will follow from
our next observation: there is a continuous path in GL(V ) which begins at our initial T and ends
at T ′. Indeed, define Tt : V → V to be the linear map determined by the requirement

Tt(ej) = uj(t).

Note that T0 = T and T1 = T ′. Moreover, since {uj(t)} is a basis for all t, it follows that Tt : V → V
is invertible for all t, which is to say Tt ∈ GL(V ).

We now show that the map [0, 1]→ GL(V ) defined by

t 7→ Tt

is actually continuous. To see the continuity, we impose coordinates via the orthonormal basis
e = {e1, . . . , en}. In such terms, Tt is the matrix whose jth column is the list of e-coordinates
of Tt(ej) = uj(t). But recall that t 7→ uj(t) is a continuous function [0, 1] → V , and a map to
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a finite-dimensional R-vector space is continuous if and only if the resulting component functions
relative to some (and then any) basis are continuous as maps to R. That is, the “e-coordinate
functions” of the uj(t)’s are continuous maps [0, 1]→ R. In more explicit terms, if we write

uj(t) =
∑

i

aij(t)ei

then aij : [0, 1]→ R is continuous. Thus, if we stare at the matrix

Tt = (aij(t))

in the e-coordinates, then every matrix entry is a continuous R-valued function of t. Since continuity
for a matrix-valued function is equivalent to continuity of the matrix entry functions, it follows that

[0, 1]→ HomR(V, V ) ' Matn×n(R)

defined by t 7→ Tt really is continuous. The metric on GL(V ) is induced by a choice of one on
HomR(V, V ), which is to say that continuity of t 7→ Tt as a GL(V )-valued map is a consequence of
its continuity as a HomR(V, V )-valued map.

Summarizing what we have done so far, given a linear isomorphism T ∈ GL(V ), we have con-
structed a continuous path inside of GL(V ) which begins at T and ends at T ′ ∈ O(V ) (where
we chose an inner product on V ). Crucial to this was the explicit nature of the Gram-Schmidt
algorithm.

This basic construction never actually needed that detT > 0. But now we use the condition
detT > 0 to prove detT ′ > 0 (and hence T ′ ∈ SO(V ), as T ′ is orthogonal). The point is simply
that the map

det : GL(V )→ R− {0}
is continuous and hence the map [0, 1] → R − {0} defined by t 7→ det(Tt) is continuous (being a
composite of continuous maps). Since a continuous map ϕ : [0, 1]→ R− {0} must have connected
(and hence interval) image, the sign of ϕ(t) must be the same throughout (Intermediate Value
Theorem!). In our situation, it follows that the function t 7→ det(Tt) has constant sign. Since the
sign is positive at t = 0, it must then be positive at t = 1. We conclude that not only is T ′ ∈ SO(V )
but in fact we have constructed a continuous path from T to T ′ entirely inside of GL+(V ). Now
we just need to prove the path-connectedness of SO(V ) to find a path in here linking up T ′ to the
identity. This is done in the next section.

3. Path connectedness of SO(V )

Choose any T ∈ SO(V ). We will find a continuous path in SO(V ) which begins at T and ends
at the identity map. This will yield the desired path connectedness. Choose an orthonormal basis
{ej} of V , and let vj = T (ej), so by orthogonality of T we know that {vj} is an orthonormal basis
of V as well. We will define a continuous function

u : [0, 1]→ V × · · · × V = V n

described by
t 7→ (u1(t), . . . , un(t))

such that u(0) = {e1, . . . , en}, u(1) = {v1, . . . , vn}, and u(t) = {u1(t), . . . , un(t)} is an orthonormal
basis of V for all t ∈ [0, 1]. Suppose for a moment that we have such a continuous system of
orthonormal bases. Define the linear maps Tt : V → V by the condition Tt(ej) = uj(t). The map
Tt is orthogonal since it takes an orthonormal basis to an orthonormal basis. Note that T0 = idV

and T1 = T . By the same method as in the previous section, the continuity of u implies that t 7→ Tt

is a continuous map from [0, 1] to GL(V ), and even into O(V ).
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In particular, the function det(Tt) is a continuous non-vanishing function on [0, 1] with values
in {±1} since orthogonal maps from V to V have determinant ±1, whence this determinant is
constant. The value at t = 0 is det(T0) = det(idV ) = 1, so t 7→ Tt is a continuous path in SO(V )
connecting the identity map to T , thereby finishing the proof of path connectedness once we have
constructed the above continuous system u of orthonormal bases moving from {ei} to {vi}. The
construction of such a continuous u must somewhere use that the orthogonal map T : V → V
sending ej to vj has determinant 1 rather than −1 (as otherwise no such T can exist!).

Now we give the construction of u. If dimV = 1, then the only orthogonal map on V with
determinant 1 is the identity, so SO(V ) consists of a single element and hence path connectedness is
trivial. We induct on dimV , so we can assume dimV > 1. Consider the two ordered orthonormal
bases {ei} and {vi} related by the orthogonal map T with detT = 1. If e1 and v1 are linearly
independent. let W be the 2-dimensional span of e1 and v1. If we have linear dependence, let W
be a 2-dimensional subspace containing the common line spanned by e1 and v1.

We have an orthogonal decomposition

V = W ⊕W⊥

(note W⊥ = 0 in case dimV = 2). Choose an ordered orthonormal basis of W of the form {v1, v′1}.
We have e1 = av1 + a′v′1 with a2 + a′2 = 1. We can find θ ∈ [0, 2π) such that

(a, a′) = (cos(θ), sin(θ)),

so if we let rt : W → W be the rotation by angle tθ for 0 ≤ t ≤ 1, then r0 is the identity and r1 is
a rotation which sends v1 to e1.

Define the linear map Tt : V ' V on V = W ⊕W⊥ by the requirment that on W⊥ it acts as
the identity and on W it acts by rt. It is clear from the construction on W and W⊥ that Tt is an
orthogonal map for all t, and even has determinant 1 for all t. The continuity of the trignometric
matrix function entries for rt makes it clear that t 7→ T ◦ Tt is a continuous map from [0, 1] to
SO(V ). Moreover, T ◦ T0 = T and T ◦ T1 sends e1 to e1. Thus, by moving along the continuous
path t 7→ T ◦ Tt in SO(V ) we link up our original map T to one which fixes e1. If we can find a
continuous path in SO(V ) from T1 to the identity map, we’d be done by simply moving along the
concatentation of the two paths.

Since T1 fixes e1, if we let V ′ = (Re1)⊥ then V = Re1 ⊕ V ′ is an orthogonal decomposition
and the orthogonal T1 must take V ′ back into V ′. If we let T ′ : V ′ → V ′ denote the orthogonal
map induced by T1, then the action of T1 on V = Re1 ⊕ V ′ is described by idRe1 ⊕ T ′. Since
dimV ′ < dimV and

1 = detT1 = det(idRe1) detT ′ = detT ′,
we have T ′ ∈ SO(V ′), so by induction there is a continuous path [0, 1]→ SO(V ′) written as t 7→ T ′t
which begins at T ′ and ends at idV ′ . Thus, the maps idRe1 ⊕ T ′t form a continuous path in SO(V )
beginning at T1 and ending at the identity.


