1. Let A be Dedekind with fraction field F, $F''/F'/F$ a tower of finite separable extensions, and $A' \subseteq F'$ and $A'' \subseteq F''$ the integral closures of A (so A'' is also the integral closure of A' in F'').

(i) Let p'' be a maximal ideal of A'', lying over $p' \subseteq A'$ and $p \subseteq A$. Use prime factorization of nonzero ideals to prove that $e(p'') = e(p')d(p''/p)$, and also prove that $f(p'') = f(p')d(p''/p)$.

(ii) Show p'' is unramified over p if and only if p'' is unramified over p' and p' is unramified over p. Prove p is totally split in F'' if and only if it is totally split in F' and each prime of F'' over p is totally split in F''.

(iii) Assume that F''/F and F'/F are Galois extensions of number fields, with A, A', and A'' the corresponding rings of integers. Prove that the quotient map $\text{Gal}(F''/F) \to \text{Gal}(F'/F)$ carries $D(p''/p)$ onto $D(p'/p)$ and $I(p''/p)$ into $I(p'/p)$ (finer methods show this is also onto), and that if p is unramified in F'' then it carries $F_r(p''/p)$ to $F_r(p'/p)$. In the unramified case, also prove that $F_r(p''/p') = F_r(p''/p)F_r(p'/p)$. As an application, read the beautiful "algebraic number theory" proof of quadratic reciprocity in §6.5.

2. Fix a Galois extension K'/K of number fields generated by a root of a monic irreducible $f \in K[X]$.

(i) For a maximal ideal p of \mathfrak{O}_K such that $f \in \mathfrak{O}_{K,p}[X]$ (holds for all but finitely many p), if $f \bmod p$ is irreducible over $\mathfrak{O}_{K,p}/p\mathfrak{O}_{K,p} = \mathfrak{O}_K/p$ then $p' := p\mathfrak{O}_{K'}$ is prime and $\text{Gal}(K'/K) = D(p'p)$ (cyclic). (Hint: Let A be a DVR (e.g., $\mathfrak{O}_{K,p}$) with maximal ideal $m = F(\mathfrak{A})$, $f \in A[X]$ monic that is irreducible and separable over F, and A' the integral closure of A in $F' := F[X]/(f)$, so A' is a finite free A-module (A is a PID). Assume $f \bmod m$ is irreducible over A/m. Prove $j : A[X]/(f) \to A'$ is an injection between finite free A-modules of the same rank, and via ring-theoretic reasons prove $j \bmod m$ is injective! Deducce "det(j) $\in A'$" (using A-bases), so j is an isomorphism. Conclude that A'/mA' is a field, so mA' is prime.)

(ii) If $\text{Gal}(K'/K)$ is not cyclic, show that $f \bmod p$ must be reducible over \mathfrak{O}_K/p for all but finitely many p.

Find an irreducible quartic $f \in \mathbb{Z}[X]$ that is reducible modulo p for all but finitely many p!

3. For $p = 31$, prove $Q(\zeta_p)$ contains a unique subfield L with $[L : Q] = 6$ and via the action of $\text{Gal}(Q(\zeta_p)/Q)$ is totally split in \mathfrak{O}_L. (Hint: it suffices to prove triviality of Frobenius at 2 for L/Q; use Exercise 1(iii) and note that $2^k(2^6) = 1 \bmod p$ for $p = 31$.) Show that $F_2[\sqrt{2}, Y]$ has fewer than 6 distinct maps to F_2 and deduce that \mathfrak{O}_L requires at least three generators over \mathbb{Z} (that is, $\mathfrak{O}_L \neq \mathbb{Z}[\alpha, \beta]$ for all $\alpha, \beta \in \mathfrak{O}_L$). Do not try to explicitly compute prime ideals (or \mathfrak{O}_L)!

4. Let $K = Q(\zeta_{23})$. The following shows $\mathbb{Z}[[\zeta_{23}]]$ is not a PID; $n = 23$ is minimal for this property.

(i) Prove that $47Z$ splits completely in $\mathbb{Z}[[\zeta_{23}]]$, and that $Q(\sqrt{-23})$ is the unique quadratic subfield of K.

(ii) Assume $\mathbb{Z}[[\zeta_{23}]]$ is a PID, and let $x \in \mathbb{Z}[[\zeta_{23}]]$ generate a prime over $47Z$. Let $y = N_{K/Q}(\sqrt{-23})(x)$. Prove $y \in Z\{1 + \sqrt{-23}\}/2$ must have norm 47 in \mathbb{Z}, but show no $z \in \mathbb{Z}\{1 + \sqrt{-23}\}/2$ has norm 47!

5. Let $K = Q(\sqrt{5}, \sqrt{-1})$. Prove any $p \neq 2, 5$ is unramified in K. Use quadratic reciprocity and Exercise 1(iii) to find $F_p \in \text{Gal}(K/Q)$ depending on $p \bmod 20$. Prove $\text{Gal}(K/Q)$ is the decomposition group at 2 (i.e., $g_2 = 1$), $Gal(K/Q(i))/Q(\sqrt{-23})$ is the decomposition group at 5, and find the inertia subgroup in each.

6. Let $K = Q(\alpha, i)$ with $\alpha^2 = 3$ and $i^2 = -1$, so $G := \text{Gal}(K/Q) \simeq D_4$ with generators s and t satisfying $s(\alpha) = i\alpha, s(i) = i, \ t(\alpha) = \alpha, t(i) = -i$ (so $s^2 = t^2 = 1$ and $tst^{-1} = s^{-1}$). Write e_p, f_p, g_p for the invariants attached to a prime p relative to K/Q. (You do not need to compute any rings of integers below!)

(i) Using Exercise 1(i) applied to $K/Q(i)/Q$, $\mathfrak{O}_K/Q(i)/Q$, show that $e_3 = 4$ and $f_3 = 2$, so $g_3 = 1$. Deduce that the unique prime over 3 is $p := \alpha\mathfrak{O}_K$, and that $D(p[3\mathbb{Z}]) = G$. Prove $I(p[3\mathbb{Z}]) = \langle s \rangle$.

(ii) Check that $T^4 - 3$ is irreducible over F_5, and use the tower $K'/Q(i)/Q$ to show $4|f_5$. Using $K/Q(i)/Q$, show $2|g_5$, and conclude that $e_5 = 1, f_5 = 4$, and $g_5 = 1$. Hence, there are exactly two primes q and q' of \mathfrak{O}_K over $5Z$, labelled with q over $(1 + 2i)Z[i]$ and q' over $(1 - 2i)Z[i]$. Explain why $Fr(q)(1 + 2i)Z[i]$ $= Fr(q)(5Z)$, and prove $q = (1 + 2i)\mathfrak{O}_K$ and $q' = (1 - 2i)\mathfrak{O}_K$.

(iii) Since 5 splits in $Q(i)$, prove $D(q[5\mathbb{Z}]) = D(q'[5\mathbb{Z}]) = Gal(K/Q(i))/Q$ = $\langle s \rangle$. Since $Fr(q[5\mathbb{Z}])$ and $Fr(q'[5\mathbb{Z}])$ generate this group, each is s or s^3. Figure out which is which. (Hint: $\alpha \notin q, q'$, and $F_5 \simeq Z[i]/(1 + 2i)$ identifies i with $\pm 2 \bmod 5$!) Explain why this is consistent with the fact that t swaps q and q'.

(iv) Prove that 7 is unramified in K with $2|f_7$ using $K/Q(\alpha)/Q$. Prove that the only nontrivial $\sigma \in G$ which can satisfy $\sigma(\alpha) = x^2 \bmod 3\mathbb{F}_3$ for a prime \mathfrak{P} of \mathfrak{O}_K over 2 are the elements st and s^2t with order 2! (Hint: consider $x = x$ and $x = i$). Deduce that $f_7 = 2, g_7 = 4$, and $7\mathbb{Z}[i]$ is totally split in \mathfrak{O}_K.