- 1. Let A be Dedekind with fraction field F, F''/F'/F a tower of finite separable extensions, and $A' \subseteq F'$ and $A'' \subseteq F''$ the integral closures of A (so A'' is also the integral closure of A' in F'').
- (i) Let \mathfrak{p}'' be a maximal ideal of A'', lying over $\mathfrak{p}' \subseteq A'$ and $\mathfrak{p} \subseteq A$. Use prime factorization of nonzero ideals to prove that $e(\mathfrak{p}''|\mathfrak{p}) = e(\mathfrak{p}''|\mathfrak{p}')e(\mathfrak{p}'|\mathfrak{p})$, and also prove that $f(\mathfrak{p}''|\mathfrak{p}) = f(\mathfrak{p}''|\mathfrak{p}')f(\mathfrak{p}'|\mathfrak{p})$.
- (ii) Show \mathfrak{p}'' is unramified over \mathfrak{p} if and only if \mathfrak{p}'' is unramified over \mathfrak{p}' and \mathfrak{p}' is unramified over \mathfrak{p} . Prove \mathfrak{p} is totally split in F'' if and only if it is totally split in F' and each prime of F' over \mathfrak{p} is totally split in F''.
- (iii) Assume that F''/F and F'/F are Galois extension of number fields, with A, A', and A'' the corresponding rings of integers. Prove that the quotient map Gal(F''/F) oup Gal(F'/F) carries $D(\mathfrak{p}''|\mathfrak{p})$ onto $D(\mathfrak{p}'|\mathfrak{p})$ and $I(\mathfrak{p}''|\mathfrak{p})$ into $I(\mathfrak{p}'|\mathfrak{p})$ (finer methods show this is also onto), and that if \mathfrak{p} is unramified in F'' then it carries $Fr(\mathfrak{p}''|\mathfrak{p})$ to $Fr(\mathfrak{p}'|\mathfrak{p})$. In the unramified case, also prove that $Fr(\mathfrak{p}''|\mathfrak{p}') = Fr(\mathfrak{p}''|\mathfrak{p})^{f(\mathfrak{p}'|\mathfrak{p})}$. As an application, read the beautiful "algebraic number theory" proof of quadratic reciprocity in §6.5.
- 2. Fix a Galois extension K'/K of number fields generated by a root of a monic irreducible $f \in K[X]$.
- (i) For a maximal ideal $\mathfrak p$ of $\mathscr O_K$ such that $f \in \mathscr O_{K,\mathfrak p}[X]$ (holds for all but finitely many $\mathfrak p$), if f mod $\mathfrak p$ is irreducible over $\mathscr O_{K,\mathfrak p}/\mathfrak p \mathscr O_{K,\mathfrak p} = \mathscr O_K/\mathfrak p$ then prove $\mathfrak p' := \mathfrak p \mathscr O_{K'}$ is prime and $\operatorname{Gal}(K'/K) = D(\mathfrak p'|\mathfrak p)$ (cyclic!). (Hint: Let A be a dvr (e.g., $\mathscr O_{K,\mathfrak p}$) with maximal ideal $\mathfrak m$, $F = \operatorname{Frac}(A)$, $f \in A[X]$ monic that is irreducible and separable over F, and A' the integral closure of A in F' := F[X]/(f), so A' is a finite free A-module (A is a PID!). Assume f mod $\mathfrak m$ is irreducible over $A/\mathfrak m$. Prove $f : A[X]/(f) \to A'$ is an injection between finite free A-modules of the same rank, and via ring-theoretic reasons prove $f : A[X]/(f) \to A'$ is a field, so $f : A[X]/(f) \to A'$ is a field
- (ii) If $\operatorname{Gal}(K'/K)$ is not cyclic, show that $f \mod \mathfrak{p}$ must be reducible over $\mathscr{O}_K/\mathfrak{p}$ for all but finitely many \mathfrak{p} . Find an irreducible quartic $f \in \mathbf{Z}[X]$ that is reducible modulo p for all but finitely many p!
- 3. For p=31, prove $\mathbf{Q}(\zeta_p)$ contains a unique subfield L with $[L:\mathbf{Q}]=6$ and via the action of $\mathrm{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})=(\mathbf{Z}/p\mathbf{Z})^{\times}$ on ζ_p prove $2\mathbf{Z}$ is totally split in \mathscr{O}_L . (Hint: it suffices to prove triviality of Frobenius at 2 for L/\mathbf{Q} ; use Exercise 1(iii) and note that $2^{\phi(p)/6}\equiv 1 \mod p$ for p=31.) Show that $\mathbf{F}_2[X,Y]$ has fewer than 6 distinct maps to \mathbf{F}_2 and deduce that \mathscr{O}_L requires at least three generators over \mathbf{Z} (that is, $\mathscr{O}_L \neq \mathbf{Z}[\alpha,\beta]$ for all $\alpha,\beta \in \mathscr{O}_L$). Do not try to explicitly compute prime ideals (or \mathscr{O}_L)!
- 4. Let $K = \mathbf{Q}(\zeta_{23})$. The following shows $\mathbf{Z}[\zeta_{23}]$ is not a PID; n = 23 is minimal for this property.
 - (i) Prove that 47**Z** splits completely in $\mathbb{Z}[\zeta_{23}]$, and that $\mathbb{Q}(\sqrt{-23})$ is the unique quadratic subfield of K.
- (ii) Assume $\mathbf{Z}[\zeta_{23}]$ is a PID, and let $x \in \mathbf{Z}[\zeta_{23}]$ generate a prime over $47\mathbf{Z}$. Let $y = N_{K/\mathbf{Q}(\sqrt{-23})}(x)$. Prove $y \in \mathbf{Z}[(1+\sqrt{-23})/2]$ must have norm 47 in \mathbf{Z} , but show no $z \in \mathbf{Z}[(1+\sqrt{-23})/2]$ has norm 47!
- 5. Let $K = \mathbf{Q}(\sqrt{5}, \sqrt{-1})$. Prove any $p \neq 2, 5$ is unramified in K. Use quadratic reciprocity and Exercise 1(iii) to find $\operatorname{Fr}_p \in \operatorname{Gal}(K/\mathbf{Q})$ depending on $p \mod 20$. Prove $\operatorname{Gal}(K/\mathbf{Q})$ is the decomposition group at 2 (i.e., $g_2 = 1$), $\operatorname{Gal}(K/\mathbf{Q}(i))$ is the decomposition group at 5, and find the inertia subgroup in each.
- 6. Let $K = \mathbf{Q}(\alpha, i)$ with $\alpha^4 = 3$ and $i^2 = -1$, so $G := \mathrm{Gal}(K/\mathbf{Q}) \simeq D_4$ with generators s and t satisfying $s(\alpha) = i\alpha, s(i) = i$, $t(\alpha) = \alpha, t(i) = -i$ (so $s^4 = t^2 = 1$ and $tst^{-1} = s^{-1}$). Write e_p, f_p, g_p for the invariants attached to a prime p relative to K/\mathbf{Q} . (You do not need to compute any rings of integers below!)
- (i) Using Exercise 1(i) applied to $K/\mathbf{Q}(\alpha)/\mathbf{Q}$ and $K/\mathbf{Q}(i)/\mathbf{Q}$, show that $e_3=4$ and $f_3=2$, so $g_3=1$. Deduce that the unique prime over 3 is $\mathfrak{p}:=\alpha\mathscr{O}_K$, and that $D(\mathfrak{p}|3\mathbf{Z})=G$. Prove $I(\mathfrak{p}|3\mathbf{Z})=\langle s\rangle$.
- (ii) Check that T^4-3 is irreducible over \mathbf{F}_5 , and use the tower $K/\mathbf{Q}(\alpha)/\mathbf{Q}$ to show $4|f_5$. Using $K/\mathbf{Q}(i)/\mathbf{Q}$, show $2|g_5$, and conclude that $e_5=1$, $f_5=4$, and $g_5=2$. Hence, there are exactly two primes \mathfrak{q} and \mathfrak{q}' of \mathscr{O}_K over $5\mathbf{Z}$, labelled with \mathfrak{q} over $(1+2i)\mathbf{Z}[i]$ and \mathfrak{q}' over $(1-2i)\mathbf{Z}[i]$. Explain why $\mathrm{Fr}(\mathfrak{q}|(1+2i)\mathbf{Z}[i])=\mathrm{Fr}(\mathfrak{q}|5\mathbf{Z})$, and prove $\mathfrak{q}=(1+2i)\mathscr{O}_K$ and $\mathfrak{q}'=(1-2i)\mathscr{O}_K$.
- (iii) Since 5 splits in $\mathbf{Q}(i)$, prove $D(\mathfrak{q}|5\mathbf{Z}) = D(\mathfrak{q}'|5\mathbf{Z}) = \operatorname{Gal}(K/\mathbf{Q}(i)) = \langle s \rangle$. Since $\operatorname{Fr}(\mathfrak{q}|5\mathbf{Z})$ and $\operatorname{Fr}(\mathfrak{q}'|5\mathbf{Z})$ generate this group, each is s or s^3 . Figure out which is which. (Hint: $\alpha \notin \mathfrak{q}, \mathfrak{q}'$, and $\mathbf{F}_5 \simeq \mathbf{Z}[i]/(1 \pm 2i)$ identifies i with $\pm 2 \mod 5!$) Explain why this is consistent with the fact that t swaps \mathfrak{q} and \mathfrak{q}' .
- (iv) Prove that 7 is unramified in K with $2|f_7$ using $K/\mathbf{Q}(\alpha)/\mathbf{Q}$. Prove that the only nontrivial $\sigma \in G$ which can satisfy $\sigma(x) \equiv x^7 \mod \mathfrak{P}$ for a prime \mathfrak{P} of \mathscr{O}_K over 7 are the elements st and s^3t with order 2! (Hint: consider $x = \alpha$ and x = i). Deduce that $f_7 = 2$, $g_7 = 4$, and $7\mathbf{Z}[i]$ is totally split in \mathscr{O}_K .

1