0. Read the proof of Proposition 2 in §2.1 of the text (“integrality of ring extensions is transitive”).

(i) Deduce that if K'/K is an extension of number fields then not only is $\mathcal{O}_{K'}$ integral over \mathcal{O}_K (even over \mathbb{Z}!) but it is the integral closure of \mathcal{O}_K in K'. This is important in the relative theory of number fields (viewing one number field as an extension of another). Taking $K' = K$, this proves \mathcal{O}_K is integrally closed!

(ii) In the setup of (i), prove that the norm and trace maps $K' \to K$ carry $\mathcal{O}_{K'}$ into \mathcal{O}_K. (Hint: Compute the norm and trace in a Galois closure of K' over K).

Remark. Whereas \mathcal{O}_K is a finitely generated and free \mathbb{Z}-module (so it is also a finitely generated \mathcal{O}_K-module, by using the same generating set as over \mathbb{Z}), it often happens that $\mathcal{O}_{K'}$ is not a free \mathcal{O}_K-module (so in such cases \mathcal{O}_K is certainly not a PID). An example is $K = \mathbb{Q}(\sqrt{-5})$ and $K' = \mathbb{Q}(\sqrt{2}, \sqrt{-3})$.

1. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{5})$ be a splitting field for $(X^2 - 3)(X^2 - 5)$ over \mathbb{Q}. Prove that $\alpha = \sqrt{3} + \sqrt{5}$ is a primitive element, and compute $D(1, \alpha, \alpha^2, \alpha^3)$ in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to “write down” the conjugates of α over \mathbb{Q}) use the formula $(-1)^{(n-1)/2} \prod_{\sigma \neq \tau} (\sigma(\alpha) - \tau(\alpha))$ (with $n = [K : \mathbb{Q}] = 4$ here).

2. A pair of ideals I and J in a ring A are said to be coprime if $I + J = A$. For example, if I is a maximal ideal and J is not contained in I then I and J are coprime.

(i) If A is a PID, prove that nonzero ideals (a) and (a') are coprime if and only if a and a' share no common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: $A = k[X,Y]$ for a field k, which you may accept is UFD.)

(ii) If I and J are coprime, prove that the inclusion $IJ \subseteq I \cap J$ is an equality.

(iii) If I_1, \ldots, I_k are ideals that are pairwise coprime with $k \geq 2$, prove that I_1 and $\prod_{j=2}^k I_j$ are coprime, and deduce by induction on k and (ii) that $\cap_{j=1}^k I_j = \prod_{j=1}^k I_j$.

(iv) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I_1, \ldots, I_k are pairwise coprime (with $k \geq 2$) then the natural map of rings

$$ A/(\prod_{j=1}^k I_j) \to (A/I_1) \times \cdots \times (A/I_k) $$

is an isomorphism, and so in particular the natural map $A \to \prod_{j=1}^k (A/I_j)$ is surjective. (Hint: induction)

3. Let $d \in \mathbb{Z} - \{0, 1\}$ be squarefree. Let $K = \mathbb{Q}(\sqrt{d})$. Let $D = \text{disc}(K/\mathbb{Q})$ (so $D \equiv 0, 1 \mod 4$, and $2|D$ if and only if $d \equiv 2, 3 \mod 4$).

(i) Construct an isomorphism of rings $\mathbb{Z}[X]/(X^2 - DX + (D^2 - D)/4) \cong \mathcal{O}_K$.

(ii) Passing to the quotient modulo p, describe $\mathcal{O}_K/p\mathcal{O}_K$ as a quotient of $\mathbb{F}_p[X]$, and for odd p (resp. $p = 2$) deduce that $p\mathcal{O}_K$ is a prime ideal of \mathcal{O}_K (i.e., $\mathcal{O}_K/p\mathcal{O}_K$ is a domain) if and only if $p \nmid D$ and D is a nonsquare modulo p (resp. $D \equiv 3 \mod 8$), in which case $\mathcal{O}_K/p\mathcal{O}_K$ is a finite field with size p^2. Prove that if $p|D$ then $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_p[t]/(t^2)$ and that if $p \nmid D$ but D is a square modulo p for odd p (resp. $D \equiv 1 \mod 8$ for $p = 2$) then $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_p \times \mathbb{F}_p$ as rings.

4. (i) Let R be a domain whose underlying set is finite. Prove that R is a field. (Hint: using counting to prove surjectivity of the multiplication map $R \to R$ against a nonzero element of R.)

(ii) Let F be a field and $F \to A$ a map of rings making A finite-dimensional as an F-vector space. Prove that A is a domain if and only if it is a field. (Hint: use F-dimension reasons to prove surjectivity of the multiplication map $A \to A$ against a nonzero element of A, a map you must check is F-linear.)

5. (i) Read §2.2 and then the statement and proof of Eisenstein’s irreducibility criterion (for PID’s) in §2.9. Prove that $X^7 + 6X + 12 \in \mathbb{Q}[X]$ is irreducible. Also prove that if $\Phi_p(X) = X^{p-1} + X^{p-2} + \cdots + X + 1 \in \mathbb{Q}[X]$ for a prime p then $\Phi_p(X^e)$ is irreducible over \mathbb{Q} for any $e \geq 0$ (hint: replace X with $X + 1$).

(ii) Let A be a PID with fraction field K. **Gauss’ Lemma** says that if a monic $f \in A[X]$ is reducible over K then it admits a nontrivial monic factorization over A: see Wikipedia for a proof. Deduce that if $f \bmod m \in (A/m)[X]$ is irreducible for some maximal ideal m of A then f is irreducible over K. Apply it to prove $X^3 - X^2 - 2X - 8 \in \mathbb{Q}[X]$ is irreducible by working in $\mathbb{F}_p[X]$ for some small prime p.
