Math 154. Homework 2

1. (i) By using arithmetic in $\mathbf{Z}[i]$ (i.e., unique factorization and knowledge of units), show $n \in \mathbf{Z}^{+}$has the form $x^{2}+y^{2}$ if and only if each prime factor $p \equiv 3 \bmod 4$ of n occurs with even multiplicity. Use arithmetic in $\mathbf{Z}[\sqrt{-2}]$ to show for p a positive prime in \mathbf{Z} that if $p=x^{2}+2 y^{2}$ then (x, y) is unique up to signs.
(ii) Using unique factorization in $\mathbf{Z}[\sqrt{2}]$ and $\mathbf{Z}[\sqrt{3}]$, prove for any prime $p \in \mathbf{Z}^{+}$that

$$
\pm p=x^{2}-2 y^{2} \text { with } x, y \in \mathbf{Z} \Leftrightarrow 2=\square \bmod p, \pm p=x^{2}-3 y^{2} \text { with } x, y \in \mathbf{Z} \Leftrightarrow 3=\square \bmod p
$$

where we mean that at least one of p or $-p$ has the desired form. For $p \neq 2,3$, convert the right side of each equivalence into congruence conditions on p by using quadratic reciprocity.
(iii) For the unit $1+\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$, note that $N(1+\sqrt{2})=-1$. Using this, show the sign on p can be dropped in the first equivalence in (ii). But show -1 is not a norm from $\mathbf{Z}[\sqrt{3}]$, and correspondingly show by example that the sign cannot be dropped in the second equivalence. (Beware that in general -1 can fail to be a norm from $\mathbf{Z}[\sqrt{d}]$ yet be a norm from $\mathbf{Q}(\sqrt{d})$: ± 33 are norms from $\mathbf{Z}[\sqrt{34}]$, so their ratio -1 is a norm from $\mathbf{Q}(\sqrt{34})$, but it can be shown that -1 is not a norm from $\mathbf{Z}[\sqrt{34}]$.)
2. Let $\zeta=(-1+\sqrt{-3}) / 2 \in K=\mathbf{Q}(\sqrt{-3})$, so ζ is a primitive cube root of unity: $\zeta^{3}=1$ but $\zeta \neq 1$ (i.e., $\left.\zeta^{2}+\zeta+1=0\right)$. Note this is not $(1+\sqrt{-3}) / 2=1+\zeta=-\zeta^{2}$, which is a primitive 6 th root of unity! The ring $\mathbf{Z}[\zeta]$ is the ring of integers of K, called the Eisenstein integers. It contains $\mathbf{Z}[\sqrt{-3}]=\mathbf{Z}+\mathbf{Z} \cdot 2 \zeta$ as an additive subgroup of index 2. Formulas for the norm $\mathrm{N}: K \rightarrow \mathbf{Q}$ relative to the respective \mathbf{Q}-bases $\{1, \sqrt{-3}\}$ and $\{1, \zeta\}$ are $\mathrm{N}(x+y \sqrt{-3})=x^{2}+3 y^{2}$ and $\mathrm{N}(a+b \zeta)=a^{2}-a b+b^{2}$ with $x, y, a, b \in \mathbf{Q}$.
(i) Using the second norm formula, prove that the group of units in $\mathbf{Z}[\zeta]$ is $\left\{ \pm 1, \pm \zeta, \pm \zeta^{2}\right\}$.
(ii) Show that $\mathbf{Z}[\zeta]$ is Euclidean using this norm, so it is a UFD (unlike $\mathbf{Z}[\sqrt{-3}]$).
(iii) Although $\mathbf{Z}[\sqrt{-3}]$ is a proper subring of $\mathbf{Z}[\zeta]$, show the norms $\mathrm{N}: \mathbf{Z}[\sqrt{-3}] \rightarrow \mathbf{Z}$ and $\mathrm{N}: \mathbf{Z}[\zeta] \rightarrow \mathbf{Z}$ have the same image, so for any $a, b \in \mathbf{Z}$ we can write $a^{2}-a b+b^{2}$ in the form $x^{2}+3 y^{2}$ for some $x, y \in \mathbf{Z}$. (Hint: Look at the norm of $(a+b \zeta) u$ for $u=1, \zeta, \zeta^{2}$.)
(iv) Show a prime $p>3$ has the form $x^{2}+3 y^{2}$ with $x, y \in \mathbf{Z}$ if and only if $-3 \equiv \square \bmod p$; convert this into a congruence on p by quadratic reciprocity. (This is what we'd expect if $\mathbf{Z}[\sqrt{-3}]$ is a UFD, but it isn't!)
3. Let K be a number field and choose $\alpha \in \mathscr{O}_{K}$.
(i) By working in a Galois closure of K over \mathbf{Q}, show that the minimal polynomial $f \in \mathbf{Q}[X]$ for α has coefficients that are algebraic integers, and so deduce that $f \in \mathbf{Z}[X]$.
(ii) Rigorously prove that the natural map of rings $\mathbf{Z}[X] /(f) \rightarrow \mathbf{Z}[\alpha]$ defined by $X \mapsto \alpha$ is an isomorphism. (Hint: For a nonzero commutative ring R and $f \in R[X]$ a monic polynomial of degree $n>0$, prove $R[X] /(f)$ is a free R-module with basis given by the residue classes of $1, X, \ldots, X^{n-1}$.)
4. Let $d \in \mathbf{Z}_{>1}$ be squarefree. Pell's equation concerns solutions to $x^{2}-d y^{2}=1$ in \mathbf{Z} with $x, y>0$; i.e., up to signs one seeks elements of $\mathbf{Z}[\sqrt{d}]-\{ \pm 1\}$ with norm 1 . Let $K=\mathbf{Q}(\sqrt{d})$ and let \mathscr{O} be its ring of integers. Dirichlet's unit theorem, proved later, implies \mathscr{O}^{\times}is infinite cyclic up to a sign. A fundamental unit of K is $\varepsilon \in \mathscr{O}^{\times}$such that $\mathscr{O}^{\times}=\langle-1\rangle \times \varepsilon^{\mathbf{Z}}$ (so the fundamental units are $\pm \varepsilon$ and $\pm 1 / \varepsilon$). If an embedding $j: K \hookrightarrow \mathbf{R}$ is chosen, the unique fundamental unit >1 is often called "the" fundamental unit (relative to j).
(i) Show $x^{2}-d y^{2} \neq-1$ for all $x, y \in \mathbf{Z}$ if $d \equiv 3 \bmod 4$. For $d \equiv 1,2 \bmod 4 \operatorname{such}$ that $-1 \equiv \square \bmod d$, the only known way to show $x^{2}-d y^{2}=-1$ has no \mathbf{Z}-solution is to check if a fundamental unit has norm 1.

The link between Pell's equation and fundamental units is explained in $\S 4.6$ of the text beneath Proposition 1, where it is explained how to find a fundamental unit. Read that discussion (which implicitly uses one of the two embeddings of K into \mathbf{R} to make sense of inequalities in K). Note that (i) a fundamental unit may have norm -1 (e.g., $1+\sqrt{2}$), and (ii) \mathscr{O} may be larger than $\mathbf{Z}[\sqrt{d}]($ if $d \equiv 1 \bmod 4$), so the fundamental units may not lie in $\mathbf{Z}[\sqrt{d}]$; e.g., $\varepsilon=(1+\sqrt{5}) / 2$ for $d=5$ and $\varepsilon=(3+\sqrt{13}) / 2$ for $d=13$.
(ii) Prove by parity considerations that if $\alpha \in \mathscr{O}-\mathbf{Z}[\sqrt{d}]$ then $\alpha^{2} \notin \mathbf{Z}[\sqrt{d}]$! This is as bad as it gets: using $\mathbf{Z}[X] /\left(X^{2}-X+(1-d) / 4\right) \simeq \mathscr{O}_{K}$ defined by $X \mapsto(1+\sqrt{d}) / 2($ Exercise 3$)$, reduce $\bmod 2$ to infer $\mathscr{O} / 2 \mathscr{O} \simeq \mathbf{F}_{4}$ (resp. $\mathscr{O} / 2 \mathscr{O} \simeq \mathbf{F}_{2} \times \mathbf{F}_{2}$) as rings when $d \equiv 5 \bmod 8($ resp. $d \equiv 1 \bmod 8)$. Since $\mathbf{Z}[\sqrt{d}]=\mathbf{Z}+2 \mathscr{O}$, conclude via the structure of $(\mathscr{O} / 2 \mathscr{O})^{\times}$that $d \equiv 1 \bmod 8 \Rightarrow \mathscr{O}^{\times} \subset \mathbf{Z}[\sqrt{d}]$ and $d \equiv 5 \bmod 8 \Rightarrow\left(\mathscr{O}^{\times}\right)^{3} \subset \mathbf{Z}[\sqrt{d}]$. This is a more conceptual explanation for the end of $\S 4.6$ where Samuel uses some messy calculations.

