MatH 154. HOMEWORK 2
1. (i) By using arithmetic in Z[é] (i.e., unique factorization and knowledge of units), show n € Z* has the
form 22 + y2 if and only if each prime factor p = 3 mod 4 of n occurs with even multiplicity. Use arithmetic
in Z[/—2] to show for p a positive prime in Z that if p = 2% + 2y? then (x,y) is unique up to signs.
(ii) Using unique factorization in Z[v/2] and Z[v/3], prove for any prime p € ZT that

tp=2a? -2 withaz,yc Z < 2=0Omodp, +p=2?—3y?> with z,y € Z < 3 =0 mod p

where we mean that at least one of p or —p has the desired form. For p # 2,3, convert the right side of each
equivalence into congruence conditions on p by using quadratic reciprocity.

(#ii) For the unit 1 4+ /2 € Z[ﬁ], note that N(1 + v2) = —1. Using this, show the sign on p can be
dropped in the first equivalence in (ii). But show —1 is not a norm from Z[v/3], and correspondingly show
by example that the sign cannot be dropped in the second equivalence. (Beware that in general —1 can fail
to be a norm from Z[V/d] yet be a norm from Q(v/d): £33 are norms from Z[v/34], so their ratio —1 is a
norm from Q(v/34), but it can be shown that —1 is not a norm from Z[v/34].)

2. Let ¢ = (=14 +/-3)/2 € K = Q(v/-3), so ( is a primitive cube root of unity: (> =1 but ¢ # 1 (i.e.,
2+ (¢ +1=0). Note this is not (1 ++/=3)/2 = 1+ ¢ = —(?, which is a primitive 6th root of unity! The
ring Z[¢] is the ring of integers of K, called the Eisenstein integers. It contains Z[v/—3] = Z + Z - 2 as an
additive subgroup of index 2. Formulas for the norm N : K — Q relative to the respective Q-bases {1,/—3}
and {1,(} are N(z + yv/=3) = 22 + 3y? and N(a + b() = a® — ab + b? with x,y,a,b € Q.

(i) Using the second norm formula, prove that the group of units in Z[(] is {1, £¢, +¢?}.

(i) Show that Z[(] is Euclidean using this norm, so it is a UFD (unlike Z[y/—3]).

(1ii) Although Z[/—3] is a proper subring of Z[¢], show the norms N : Z[y/—3] — Z and N : Z[(] — Z
have the same image, so for any a,b € Z we can write a? — ab + b? in the form z2 + 3y? for some z,y € Z.
(Hint: Look at the norm of (a + b¢)u for u = 1,¢,¢2.)

(iv) Show a prime p > 3 has the form 22 + 3y? with x,y € Z if and only if —3 = [0 mod p; convert this
into a congruence on p by quadratic reciprocity. (This is what we’d expect if Z[/—3] is a UFD, but it isn’t!)

3. Let K be a number field and choose o« € 0.

(4) By working in a Galois closure of K over Q, show that the minimal polynomial f € Q[X] for « has
coefficients that are algebraic integers, and so deduce that f € Z[X].

(#) Rigorously prove that the natural map of rings Z[X]/(f) — Z[a] defined by X +— « is an isomorphism.
(Hint: For a nonzero commutative ring R and f € R[X] a monic polynomial of degree n > 0, prove R[X|/(f)
is a free R-module with basis given by the residue classes of 1, X, ..., X" 1))

4. Let d € Z~ be squarefree. Pell’s equation concerns solutions to 22 — dy? = 1 in Z with z,y > 0; i.e., up
to signs one seeks elements of Z[v/d] — {1} with norm 1. Let K = Q(v/d) and let & be its ring of integers.
Dirichlet’s unit theorem, proved later, implies ¢ is infinite cyclic up to a sign. A fundamental unit of K is
€ € 0 such that 0% = (—1) x £Z (so the fundamental units are +¢ and +1/¢). If an embedding j : K — R
is chosen, the unique fundamental unit > 1 is often called “the” fundamental unit (relative to 7).

(7) Show 2% — dy? # —1 for all z,y € Z if d = 3 mod 4. For d = 1,2 mod 4 such that —1 = (0 mod d, the
only known way to show z? — dy?> = —1 has no Z-solution is to check if a fundamental unit has norm 1.

The link between Pell’s equation and fundamental units is explained in §4.6 of the text beneath Proposition
1, where it is explained how to find a fundamental unit. Read that discussion (which implicitly uses one of
the two embeddings of K into R to make sense of inequalities in K). Note that (i) a fundamental unit may
have norm —1 (e.g., 1 +/2), and (ii) & may be larger than Z[v/d] (if d = 1 mod 4), so the fundamental
units may not lie in Z[Vd]; e.g., ¢ = (1 ++/5)/2 for d = 5 and £ = (3 + v/13)/2 for d = 13.

(ii) Prove by parity considerations that if o € € — Z[/d] then a? ¢ Z[v/d]! This is as bad as it gets: using
Z[X]/(X?— X +(1—d)/4) ~ Ok defined by X + (1++/d)/2 (Exercise 3), reduce mod 2 to infer ¢/20 ~ Fy
(resp. 0/20 ~ Fy x Fy) as rings when d = 5 mod 8 (resp. d = 1 mod 8). Since Z[v/d] = Z + 20, conclude
via the structure of (¢/20)* that d = 1 mod 8 = 6% C Z[Vd] and d = 5 mod 8 = (%) C Z[/d]. This
is a more conceptual explanation for the end of §4.6 where Samuel uses some messy calculations.
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