
Math 154. Homework 2
1. (i) By using arithmetic in Z[i] (i.e., unique factorization and knowledge of units), show n ∈ Z+ has the
form x2 + y2 if and only if each prime factor p ≡ 3 mod 4 of n occurs with even multiplicity. Use arithmetic
in Z[

√
−2] to show for p a positive prime in Z that if p = x2 + 2y2 then (x, y) is unique up to signs.

(ii) Using unique factorization in Z[
√

2] and Z[
√

3], prove for any prime p ∈ Z+ that

±p = x2 − 2y2 with x, y ∈ Z⇔ 2 = � mod p, ±p = x2 − 3y2 with x, y ∈ Z⇔ 3 = � mod p

where we mean that at least one of p or −p has the desired form. For p 6= 2, 3, convert the right side of each
equivalence into congruence conditions on p by using quadratic reciprocity.

(iii) For the unit 1 +
√

2 ∈ Z[
√

2], note that N(1 +
√

2) = −1. Using this, show the sign on p can be

dropped in the first equivalence in (ii). But show −1 is not a norm from Z[
√

3], and correspondingly show
by example that the sign cannot be dropped in the second equivalence. (Beware that in general −1 can fail

to be a norm from Z[
√
d] yet be a norm from Q(

√
d): ±33 are norms from Z[

√
34], so their ratio −1 is a

norm from Q(
√

34), but it can be shown that −1 is not a norm from Z[
√

34].)

2. Let ζ = (−1 +
√
−3)/2 ∈ K = Q(

√
−3), so ζ is a primitive cube root of unity: ζ3 = 1 but ζ 6= 1 (i.e.,

ζ2 + ζ + 1 = 0). Note this is not (1 +
√
−3)/2 = 1 + ζ = −ζ2, which is a primitive 6th root of unity! The

ring Z[ζ] is the ring of integers of K, called the Eisenstein integers. It contains Z[
√
−3] = Z + Z · 2ζ as an

additive subgroup of index 2. Formulas for the norm N : K → Q relative to the respective Q-bases {1,
√
−3}

and {1, ζ} are N(x+ y
√
−3) = x2 + 3y2 and N(a+ bζ) = a2 − ab+ b2 with x, y, a, b ∈ Q.

(i) Using the second norm formula, prove that the group of units in Z[ζ] is {±1,±ζ,±ζ2}.
(ii) Show that Z[ζ] is Euclidean using this norm, so it is a UFD (unlike Z[

√
−3]).

(iii) Although Z[
√
−3] is a proper subring of Z[ζ], show the norms N : Z[

√
−3] → Z and N : Z[ζ] → Z

have the same image, so for any a, b ∈ Z we can write a2 − ab+ b2 in the form x2 + 3y2 for some x, y ∈ Z.
(Hint: Look at the norm of (a+ bζ)u for u = 1, ζ, ζ2.)

(iv) Show a prime p > 3 has the form x2 + 3y2 with x, y ∈ Z if and only if −3 ≡ � mod p; convert this
into a congruence on p by quadratic reciprocity. (This is what we’d expect if Z[

√
−3] is a UFD, but it isn’t!)

3. Let K be a number field and choose α ∈ OK .
(i) By working in a Galois closure of K over Q, show that the minimal polynomial f ∈ Q[X] for α has

coefficients that are algebraic integers, and so deduce that f ∈ Z[X].
(ii) Rigorously prove that the natural map of rings Z[X]/(f)→ Z[α] defined by X 7→ α is an isomorphism.

(Hint: For a nonzero commutative ring R and f ∈ R[X] a monic polynomial of degree n > 0, prove R[X]/(f)
is a free R-module with basis given by the residue classes of 1, X, . . . ,Xn−1.)

4. Let d ∈ Z>1 be squarefree. Pell’s equation concerns solutions to x2 − dy2 = 1 in Z with x, y > 0; i.e., up
to signs one seeks elements of Z[

√
d]−{±1} with norm 1. Let K = Q(

√
d) and let O be its ring of integers.

Dirichlet’s unit theorem, proved later, implies O× is infinite cyclic up to a sign. A fundamental unit of K is
ε ∈ O× such that O× = 〈−1〉×εZ (so the fundamental units are ±ε and ±1/ε). If an embedding j : K ↪→ R
is chosen, the unique fundamental unit > 1 is often called “the” fundamental unit (relative to j).

(i) Show x2 − dy2 6= −1 for all x, y ∈ Z if d ≡ 3 mod 4. For d ≡ 1, 2 mod 4 such that −1 ≡ � mod d, the
only known way to show x2 − dy2 = −1 has no Z-solution is to check if a fundamental unit has norm 1.

The link between Pell’s equation and fundamental units is explained in §4.6 of the text beneath Proposition
1, where it is explained how to find a fundamental unit. Read that discussion (which implicitly uses one of
the two embeddings of K into R to make sense of inequalities in K). Note that (i) a fundamental unit may

have norm −1 (e.g., 1 +
√

2), and (ii) O may be larger than Z[
√
d] (if d ≡ 1 mod 4), so the fundamental

units may not lie in Z[
√
d]; e.g., ε = (1 +

√
5)/2 for d = 5 and ε = (3 +

√
13)/2 for d = 13.

(ii) Prove by parity considerations that if α ∈ O−Z[
√
d] then α2 6∈ Z[

√
d]! This is as bad as it gets: using

Z[X]/(X2−X+(1−d)/4) ' OK defined by X 7→ (1+
√
d)/2 (Exercise 3), reduce mod 2 to infer O/2O ' F4

(resp. O/2O ' F2 × F2) as rings when d ≡ 5 mod 8 (resp. d ≡ 1 mod 8). Since Z[
√
d] = Z + 2O, conclude

via the structure of (O/2O)× that d ≡ 1 mod 8 ⇒ O× ⊂ Z[
√
d] and d ≡ 5 mod 8 ⇒ (O×)3 ⊂ Z[

√
d]. This

is a more conceptual explanation for the end of §4.6 where Samuel uses some messy calculations.
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