MATH 154. HOMEWORK 2

1. (i) By using arithmetic in $\mathbb{Z}[i]$ (i.e., unique factorization and knowledge of units), show $n \in \mathbb{Z}^+$ has the form $x^2 + y^2$ if and only if each prime factor $p \equiv 3 \mod 4$ of n occurs with even multiplicity. Use arithmetic in $\mathbb{Z}[\sqrt{-2}]$ to show for p a positive prime in \mathbb{Z} that if $p = x^2 + 2y^2$ then (x, y) is unique up to signs.

(*ii*) Using unique factorization in $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{3}]$, prove for any prime $p \in \mathbb{Z}^+$ that

$$\pm p = x^2 - 2y^2$$
 with $x, y \in \mathbf{Z} \Leftrightarrow 2 = \Box \mod p, \ \pm p = x^2 - 3y^2$ with $x, y \in \mathbf{Z} \Leftrightarrow 3 = \Box \mod p$

where we mean that at least one of p or -p has the desired form. For $p \neq 2, 3$, convert the right side of each equivalence into congruence conditions on p by using quadratic reciprocity.

(*iii*) For the unit $1 + \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$, note that $N(1 + \sqrt{2}) = -1$. Using this, show the sign on p can be dropped in the first equivalence in (*ii*). But show -1 is not a norm from $\mathbb{Z}[\sqrt{3}]$, and correspondingly show by example that the sign cannot be dropped in the second equivalence. (Beware that in general -1 can fail to be a norm from $\mathbb{Z}[\sqrt{d}]$ yet be a norm from $\mathbb{Q}(\sqrt{d})$: ± 33 are norms from $\mathbb{Z}[\sqrt{34}]$, so their ratio -1 is a norm from $\mathbb{Q}(\sqrt{34})$, but it can be shown that -1 is *not* a norm from $\mathbb{Z}[\sqrt{34}]$.)

2. Let $\zeta = (-1 + \sqrt{-3})/2 \in K = \mathbf{Q}(\sqrt{-3})$, so ζ is a primitive cube root of unity: $\zeta^3 = 1$ but $\zeta \neq 1$ (i.e., $\zeta^2 + \zeta + 1 = 0$). Note this is not $(1 + \sqrt{-3})/2 = 1 + \zeta = -\zeta^2$, which is a primitive 6th root of unity! The ring $\mathbf{Z}[\zeta]$ is the ring of integers of K, called the *Eisenstein integers*. It contains $\mathbf{Z}[\sqrt{-3}] = \mathbf{Z} + \mathbf{Z} \cdot 2\zeta$ as an additive subgroup of index 2. Formulas for the norm N : $K \to \mathbf{Q}$ relative to the respective \mathbf{Q} -bases $\{1, \sqrt{-3}\}$ and $\{1, \zeta\}$ are N $(x + y\sqrt{-3}) = x^2 + 3y^2$ and N $(a + b\zeta) = a^2 - ab + b^2$ with $x, y, a, b \in \mathbf{Q}$.

(i) Using the second norm formula, prove that the group of units in $\mathbf{Z}[\zeta]$ is $\{\pm 1, \pm \zeta, \pm \zeta^2\}$.

(*ii*) Show that $\mathbf{Z}[\zeta]$ is Euclidean using this norm, so it is a UFD (unlike $\mathbf{Z}[\sqrt{-3}]$).

(*iii*) Although $\mathbb{Z}[\sqrt{-3}]$ is a proper subring of $\mathbb{Z}[\zeta]$, show the norms $N : \mathbb{Z}[\sqrt{-3}] \to \mathbb{Z}$ and $N : \mathbb{Z}[\zeta] \to \mathbb{Z}$ have the same image, so for any $a, b \in \mathbb{Z}$ we can write $a^2 - ab + b^2$ in the form $x^2 + 3y^2$ for some $x, y \in \mathbb{Z}$. (Hint: Look at the norm of $(a + b\zeta)u$ for $u = 1, \zeta, \zeta^2$.)

(*iv*) Show a prime p > 3 has the form $x^2 + 3y^2$ with $x, y \in \mathbb{Z}$ if and only if $-3 \equiv \Box \mod p$; convert this into a congruence on p by quadratic reciprocity. (This is what we'd expect if $\mathbb{Z}[\sqrt{-3}]$ is a UFD, but it isn't!)

3. Let K be a number field and choose $\alpha \in \mathcal{O}_K$.

(i) By working in a Galois closure of K over \mathbf{Q} , show that the minimal polynomial $f \in \mathbf{Q}[X]$ for α has coefficients that are algebraic integers, and so deduce that $f \in \mathbf{Z}[X]$.

(*ii*) Rigorously prove that the natural map of rings $\mathbf{Z}[X]/(f) \to \mathbf{Z}[\alpha]$ defined by $X \mapsto \alpha$ is an isomorphism. (Hint: For a nonzero commutative ring R and $f \in R[X]$ a *monic* polynomial of degree n > 0, prove R[X]/(f) is a free R-module with basis given by the residue classes of $1, X, \ldots, X^{n-1}$.)

4. Let $d \in \mathbf{Z}_{>1}$ be squarefree. *Pell's equation* concerns solutions to $x^2 - dy^2 = 1$ in \mathbf{Z} with x, y > 0; i.e., up to signs one seeks elements of $\mathbf{Z}[\sqrt{d}] - \{\pm 1\}$ with norm 1. Let $K = \mathbf{Q}(\sqrt{d})$ and let \mathscr{O} be its ring of integers. *Dirichlet's unit theorem*, proved later, implies \mathscr{O}^{\times} is infinite cyclic up to a sign. A fundamental unit of K is $\varepsilon \in \mathscr{O}^{\times}$ such that $\mathscr{O}^{\times} = \langle -1 \rangle \times \varepsilon^{\mathbf{Z}}$ (so the fundamental units are $\pm \varepsilon$ and $\pm 1/\varepsilon$). If an embedding $j: K \hookrightarrow \mathbf{R}$ is chosen, the unique fundamental unit > 1 is often called "the" fundamental unit (relative to j).

(i) Show $x^2 - dy^2 \neq -1$ for all $x, y \in \mathbb{Z}$ if $d \equiv 3 \mod 4$. For $d \equiv 1, 2 \mod 4$ such that $-1 \equiv \Box \mod d$, the only known way to show $x^2 - dy^2 = -1$ has no Z-solution is to check if a fundamental unit has norm 1.

The link between Pell's equation and fundamental units is explained in §4.6 of the text beneath Proposition 1, where it is explained how to find a fundamental unit. Read that discussion (which implicitly uses one of the two embeddings of K into **R** to make sense of inequalities in K). Note that (i) a fundamental unit may have norm -1 (e.g., $1 + \sqrt{2}$), and (ii) \mathcal{O} may be larger than $\mathbf{Z}[\sqrt{d}]$ (if $d \equiv 1 \mod 4$), so the fundamental units may not lie in $\mathbf{Z}[\sqrt{d}]$; e.g., $\varepsilon = (1 + \sqrt{5})/2$ for d = 5 and $\varepsilon = (3 + \sqrt{13})/2$ for d = 13.

(*ii*) Prove by parity considerations that if $\alpha \in \mathcal{O} - \mathbb{Z}[\sqrt{d}]$ then $\alpha^2 \notin \mathbb{Z}[\sqrt{d}]!$ This is as bad as it gets: using $\mathbb{Z}[X]/(X^2 - X + (1-d)/4) \simeq \mathcal{O}_K$ defined by $X \mapsto (1+\sqrt{d})/2$ (Exercise 3), reduce mod 2 to infer $\mathcal{O}/2\mathcal{O} \simeq \mathbb{F}_4$ (resp. $\mathcal{O}/2\mathcal{O} \simeq \mathbb{F}_2 \times \mathbb{F}_2$) as rings when $d \equiv 5 \mod 8$ (resp. $d \equiv 1 \mod 8$). Since $\mathbb{Z}[\sqrt{d}] = \mathbb{Z} + 2\mathcal{O}$, conclude via the structure of $(\mathcal{O}/2\mathcal{O})^{\times}$ that $d \equiv 1 \mod 8 \Rightarrow \mathcal{O}^{\times} \subset \mathbb{Z}[\sqrt{d}]$ and $d \equiv 5 \mod 8 \Rightarrow (\mathcal{O}^{\times})^3 \subset \mathbb{Z}[\sqrt{d}]$. This is a more conceptual explanation for the end of §4.6 where Samuel uses some messy calculations.