0. Read the handout on norm and trace, and then do the following calculations.

 (i) If \(K = k(\sqrt{a}) \) (nonsquare \(a \in k \)), for \(\alpha = x + y\sqrt{a} \) with \(x, y \in k \) show \(\text{Tr}_{K/k}(\alpha) = 2x \) and \(N_{K/k}(\alpha) = x^2 - ay^2 \).

 (ii) For the biquadratic field \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \) and \(\alpha = x + y\sqrt{2} + z\sqrt{3} + w\sqrt{6} \in K \) with \(x, y, z, w \in \mathbb{Q} \), compute \(\text{Tr}_{K/\mathbb{Q}}(\alpha) \) and \(N_{K/\mathbb{Q}}(\alpha) \) in three ways (as polynomials in \(x, y, z, w \) with \(\mathbb{Z} \)-coefficients): directly use the Galois-theoretic formulas for the norm and trace, use transitivity relative to the tower \(K/\mathbb{Q}(\sqrt{2})/\mathbb{Q} \) of quadratic extensions and the general formulas in (i), and using instead the tower \(K/\mathbb{Q}(\sqrt{3})/\mathbb{Q} \). You should get the same formula in all cases; if not, find your mistake and fix it!

1. Adapting the method of proof of unique factorization for \(\mathbb{Z}[\sqrt{-1}] \) from lecture, prove that \(\mathbb{Z}[\sqrt{-2}] \) is a unique factorization domain by establishing a division algorithm; the picture of \(\mathbb{Z}[\sqrt{-2}] \) as a lattice in the complex plane may be helpful for some insight. Also do the same for \(\mathbb{Z}[\sqrt{3}] \) (where there’s no geometric picture, just algebra!) by exploiting the inequality \(|x^2 - 3y^2| \leq \max(x^2, 3y^2) \) to bypass the lack of a picture.

 Where does your argument for \(\mathbb{Z}[\sqrt{3}] \) fail to carry over to \(\mathbb{Z}[\sqrt{-3}] \) (which we have seen in lecture is not a unique factorization domain)?

2. Using the norm map \(\mathbb{Z}[i] \to \mathbb{Z} \), find prime factorizations of \(3 + 7i \) and \(23 + 14i \).

3. This exercise explores the interference of units when considering pure powers in quadratic rings, but now focusing on squares (when \(-1 \) is not a square, in contrast with Fermat’s analysis of \(y^2 = x^2 - 2 \) using cubes in \(\mathbb{Z}[\sqrt{-2}] \), for which we got “lucky” in lecture that the units \(\pm 1 \) were all units).

 (i) Rigorously deduce from the usual definition of a unique factorization domain (i.e., all nonzero nonunits are finite products of irreducible elements, unique up to rearrangement and unit multiplications against the factors) the “pure power” formulation: each nonzero nonunit has the form \(\alpha = u\pi_1^{e_1} \cdots \pi_n^{e_n} \) for pairwise non-associate irreducibles \(\pi_j \) and a unit \(u \), and for any other such factorization \(\alpha = U\Pi_1^{f_1} \cdots \Pi_N^{f_N} \) necessarily \(n = N \) and we can uniquely rearrange the \(\Pi_j \)’s so that \(\Pi_j \) is associate to \(\pi_j \) for each \(j \), in which case \(e_j = f_j \) for all \(j \). (In other words, the number of factors and the exponents are uniquely determined, up to rearrangement.)

 (ii) In \(\mathbb{Z}[\sqrt{-6}] \) (whose only units are \(\pm 1 \)), observe that \(2 \cdot (-3) = (\sqrt{-6})^2 \) is a perfect square. Using that \(2 - 3 = -1 \), show that \(2 \) and \(-3 \) have no common irreducible factors. Using the norm map to \(\mathbb{Z} \), prove that \(2 \) and \(-3 \) are irreducible, and deduce in particular that \(\mathbb{Z}[\sqrt{-6}] \) is not a UFD.

 (iii) In \(\mathbb{Z}[\sqrt{6}] \) (which turns out to be a unique factorization domain with infinite unit group: \(\pm(5 + 2\sqrt{6})^2 \), as we’ll see later), observe that \(2 \cdot 3 = (\sqrt{6})^2 \) is a perfect square. Show that \(2 \) and \(3 \) have no common irreducible factors and exhibit each as a unit multiple of a square in \(\mathbb{Z}[\sqrt{6}] \). (Hint: consider norms, which may be negative, to discover irreducible factorizations for 2 and 3 in \(\mathbb{Z}[\sqrt{6}] \). Watch out for associates!)

4. This exercise leads you through an “algebraic number theory” proof of Fermat’s two-squares theorem. The result to be shown is that an odd positive prime \(p \) has the form \(p = x^2 + y^2 \) if and only if \(p \equiv 1 \mod 4 \).

 (i) Using mod-4 considerations, show that if \(p \) admits such a form then \(-1 \) must be a square mod \(p \) (and so the case \(p \equiv 3 \mod 4 \) is ruled out).

 (ii) Now assume \(p \equiv 1 \mod 4 \), and make \(n \in \mathbb{Z} \) so \(n^2 \equiv -1 \mod p \). Since \(p|(n^2 + 1) \) in \(\mathbb{Z} \), in \(\mathbb{Z}[i] \) we have \(p|(n + i)(n - i) \). Use this to get a contradiction (via unique factorization) if \(p \) is irreducible in \(\mathbb{Z}[i] \).

 (iii) By (ii), there must be a factorization \(p = \alpha\beta \) in \(\mathbb{Z}[i] \) with \(\alpha, \beta \in \mathbb{Z}[i] \) nonunits. By taking norms of both sides and recalling the explicit formula \(N(u + vi) = u^2 + v^2 \) for \(u, v \in \mathbb{Q} \), deduce that \(p = x^2 + y^2 \) for some \(x, y \in \mathbb{Z} \).

 (iv) Adapt this technique with \(\mathbb{Z}[\sqrt{-2}] \) to show that if \(p \) is an odd positive prime then \(p = x^2 + 2y^2 \) for some \(x, y \in \mathbb{Z} \) if and only if \(-2 \) is a square mod \(p \). Using quadratic reciprocity (really the aspect concerning the Legendre symbol \((2/p) \)), describe all such \(p \) by a congruence condition on \(p \mod 8 \).