Math 121. Homework 6

1. Let \(L/k \) be a finite normal extension, \(G = \text{Aut}(L/k) \). For each subgroup \(H \) in \(G \), define

\[
L^H = \{ x \in L | h(x) = x \text{ for all } h \in H \}.
\]

For each intermediate field \(k' \) between \(L \) and \(k \), define \(G_{k'} = \{ g \in G | g(x) = x \text{ for all } x \in k' \} \).

(i) Show that \(L^H \) is an intermediate field between \(k \) and \(L \) and that \(G_{k'} \) is a subgroup of \(G \), with \(H \subseteq G_{k \cdot H} \) and \(k' \subseteq L^{G_{k'}} \). Thus, \(H \mapsto L^H \) and \(k' \mapsto G_{k'} \) give maps between the set of subgroups of \(G \) and the set of intermediate field extensions between \(k \) and \(L \) (these maps are not always bijections, since \(G \) can be trivial with \([L:k] > 1 \); e.g., \(k = \mathbb{Q} \), \(L = \mathbb{Q}[T]/(T^3 - 2) \)).

(ii) Let \(k = \mathbb{Q} \) and let \(L = \mathbb{Q}(\alpha, \beta) \) with \(\alpha^2 = 2, \beta^2 = 3 \). Show that \(G = \text{Aut}(L/k) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

Show that the maps in (i) do give a bijection between the set of intermediate fields between \(L \) and \(k \) and the set of subgroups of \(\text{Aut}(L/k) \) (hint: first prove \(G_{k \cdot H} = H \) for every subgroup \(H \) of \(G \), then deduce that the intermediate fields \(k' \) between \(k \) and \(L \) are just the “obvious” ones, and show \(L^{G_{k'}} = k' \) for each \(k' \).

2. (i) Let \(k \) be a field, \(G \) a finite subgroup of \(k^\times \). Show that \(G \) is cyclic (hint: use the fact that a non-zero polynomial over \(k \) has no more roots than its degree). Is this “physically obvious” when \(k = \mathbb{C} \)?

(ii) Prove that if \(k \) is a finite field with characteristic \(p \), then \(k \) is a quotient of \(\mathbb{F}_p[X] \). Conclude that for every positive integer \(d \), there exists an irreducible polynomial of degree \(d \) in \(\mathbb{F}_p[X] \).

3. Choose a positive integer \(N \). A primitive \(N \)-th root of unity over a field \(k \) is an element \(\zeta \) in an extension of \(k \) so that \(\zeta^N = 1 \) and the multiplicative group generated by \(\zeta \) has order exactly \(N \).

(i) If \(N \) is divisible by the characteristic of \(k \) (in particular, \(k \) must have positive characteristic), then show that no primitive \(N \)-th root of unity exists over \(k \).

(ii) If \(N \) is not divisible by the characteristic of \(k \) (always the case if \(k \) has characteristic 0), then prove that a primitive \(N \)-th root of unity exists over \(k \). In addition, show that an extension \(L/k \) contains a primitive \(N \)-th root of unity over \(k \) if and only if it contains a splitting field for \(X^N - 1 \in k[X] \). In this case, show that the number of primitive \(N \)-th roots of unity over \(k \) in \(L \) is \(\varphi(N) = |\mathbb{Z}/N\mathbb{Z}^\times| \).

4. Let \(k \) be a field, \(N \) a positive integer not divisible by the characteristic of \(k \). Let \(L/k \) be a splitting field for \(X^N - 1 \) over \(k \). This is called the \(N \)-th cyclotomic extension of \(k \). The case \(k = \mathbb{Q} \) is very important (and one usually just speaks of cyclotomic fields when \(k = \mathbb{Q} \)).

(i) For each \(\sigma \in \text{Aut}(L/k) \), prove there is a unique \(n(\sigma) \in \mathbb{Z}/N\mathbb{Z} \) so that \(\sigma(\zeta) = \zeta^{n(\sigma)} \) for every \(N \)-th root of unity \(\zeta \in L \).

(ii) Prove \(n(\sigma) \in (\mathbb{Z}/N\mathbb{Z})^\times \) and that \(\sigma \mapsto n(\sigma) \) is an injective group homomorphism \(\text{Aut}(L/k) \to (\mathbb{Z}/N\mathbb{Z})^\times \) (so \(\text{Aut}(L/k) \) is abelian).

(iii) For \(n \geq 1 \) and prime \(p \), prove the polynomial \(\Phi_p(X) = \Phi_p(X^{p^{n-1}}) = (X^{p^n} - 1)/(X^{p^{n-1}} - 1) \in \mathbb{Z}[X] \) of degree \(p^{n-1}(p-1) \) is irreducible over \(\mathbb{Q} \), and deduce that \(\text{Aut}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}) \to (\mathbb{Z}/p^n\mathbb{Z})^\times \) is an isomorphism.

5. Let \(L = \mathbb{F}_p(X,Y), k = \mathbb{F}_p(X^p, Y^p) \).

(i) Show that \(L \) is the splitting field over \(k \) of \((T^p - X^p)(T^p - Y^p) \in k[T] \). Prove that \([L:k] = p^2 \).

(ii) Show that \(L/k \) is not generated by a single element.

(iii) Exhibit (with proof!) an explicit list of infinitely many distinct intermediate fields between \(L \) and \(k \! \! \! \).