This handout proves two lemmas that came up in the proof of the symmetric function theorem.

1. A lemma on polynomials in several variables

Lemma 1.1. Let K be an infinite field. If $f \in K[T_1, \ldots, T_n]$ satisfies $f(t_1, \ldots, t_n) = 0$ for all n-tuples $(t_1, \ldots, t_n) \in K^n$, then $f = 0$.

This lemma is always false for finite K by taking $f = T_1^q - T_1$, where q is the size of K.

Proof. For $n = 1$, the assertion is that a nonzero polynomial in $K[T]$ cannot vanish as a function on K. But K is infinite and a nonzero polynomial over a field cannot have more roots than its degree. Thus, the case $n = 1$ is true. In general, we may assume $n > 1$ and by induction we can assume the result is known for $n - 1$. We use the isomorphism

$$K[T_1, \ldots, T_{n-1}][T_n] \cong K[T_1, \ldots, T_n]$$

to write $f = \sum a_j T_n^j$ where $a_j \in K[T_1, \ldots, T_{n-1}]$. Fix $t_1, \ldots, t_{n-1} \in K$ and let

$$g = \sum a_j(t_1, \ldots, t_{n-1}) T_n^j \in K[T].$$

For any $t \in K$ we have $g(t) = f(t_1, \ldots, t_{n-1}, t) = 0$, so by the one-variable case $g = 0$. Hence, its coefficients $a_j(t_1, \ldots, t_{n-1}) \in K$ vanish. This holds for any $(n - 1)$-tuple of t_j’s in K, so by induction $a_j = 0$ in $K[T_1, \ldots, T_{n-1}]$ for all j. Thus, $f = \sum a_j T_n^j = 0$ in $K[T_1, \ldots, T_n]$.

2. Integrality

The more non-trivial lemma which arose in the proof of the symmetric function theorem is:

Lemma 2.1. Let F/K be an extension of fields. Let R be a subring of K. If $a, b \in F$ each satisfy monic polynomial equations with coefficients in R, then so do $a + b$ and ab.

Before we prove the lemma, we emphasize that the case $R = K$ is the old assertion that sums and products of algebraic elements over a ground field are again algebraic over the ground field. This was proven by using K-dimension of vector spaces, and more specifically the theory of linear algebra over K. When working over R, one does not have as simple a theory of “vector spaces” (really, modules) over R, and hence the old arguments do not carry over to handle assertions involving monic polynomials with R coefficients.

Definition 2.2. Let $R \to S$ be an extension of commutative rings. We say $s \in S$ is integral over R if s satisfies a monic polynomial $f(s) = 0$ where $f \in R[T]$.

The key in this definition is the monicity of f. Of course, if R is a field then monicity is not a serious constraint, since a nonzero leading coefficient in a field is a unit and hence may be scaled away by multiplying through by its reciprocal. But in more general rings R not every nonzero polynomial has a unit leading coefficient. It turns out that integrality is the correct notion which generalizes the field-theoretic concept of algebraicity in the study of general commutative rings. For example, $x = (-1 + \sqrt{-3})/2$ satisfies $x^2 + x + 1 = 0$, so it is integral over \mathbb{Z}, whereas $3/2 \in \mathbb{Q}$ is not integral over \mathbb{Z} (as one sees by using the rational root theorem).
3. An integrality result

The lemma of interest above is a special case of the following (applied to $R \rightarrow F$ in the lemma):

Theorem 3.1. Let $R \hookrightarrow S$ be an extension of commutative rings. If $s, s' \in S$ are integral over R, then so are $s + s'$ and ss'.

The proof yields enormous polynomial relations for $s + s'$ and ss' (via monstrous determinants). There is no simple way to “see” these relations just given ones for s and s'.

Proof. Let $R' = R[s, s']$ be the R-subalgebra of S generated by s and s'. That is, R' is the subset of finite sums $\sum r_{ij}s^is'^j$ with $r_{ij} \in R$. It is easy to check that R' is a subring of S (i.e., stable under addition and multiplication) and also contains R. Concretely, R' is the image of the R-algebra map $R[X, Y] \rightarrow S$ determined by $X \mapsto s$, $Y \mapsto s'$. Note also that $s + s'$, $ss' \in R'$. Thus, we lose no generality by replacing S with R'.

The key point of monicity is that since we have relations

$$s^n = r_{n-1}s^{n-1} + \cdots + r_0, \quad s^m = r'_{m-1}s'^{m-1} + \cdots + r'_0$$

with $r_i, r'_j \in R$, we can recursively feed such relations back into themselves to see that for any $e > n$ (resp. $e' > m$), s^e (resp. s'^e) can be expressed as an R-linear combination of $1, s, \ldots, s^{n-1}$ (resp. $1, s', \ldots, s'^{m-1}$). In other words, $R' = R[s, s']$ is spanned over R by the finitely many monomials $s^is'^j$ with $i < n$ and $j < m$. Hence, R' is “R-finite” over R in the sense that all elements of R' may be expressed as R-linear combinations on a fixed finite set of elements. We will use this condition to prove that all elements of R' (in particular, the elements $s + s'$ and ss') are integral over R. If R were a field, we could say that R' is a finite-dimensional R-vector space, and this was the key to using linear algebra in our earlier proofs that sums and products of quantities algebraic over a field are again algebraic over that field (ultimately using that a subspace of a finite-dimensional vector space is finite-dimensional). But since R is not a field, we do not have linear algebra available and so must proceed differently.

The general result we aim to prove is the following: if $R \rightarrow R'$ is an extension of rings and R' is R-finite (in the sense that there exist $s_1, \ldots, s_N \in R'$ such that all elements of R' can be written as $\sum r_is_i$ with $r_i \in R$), then every $s \in R'$ is integral over R. Let’s write $ss_i = \sum_{j=1}^N r_{ij}s_j$ for (not necessarily unique!) $r_{ij} \in R$. Let $M = (r_{ij})$. This is an $N \times N$ matrix. The Cayley-Hamilton theorem asserts that any square matrix $A = (a_{ij})$ over a field satisfies its characteristic polynomial; that is, $\sum c_jA^j$ is the zero matrix if $\sum c_jT^j$ is the characteristic polynomial of A. In fact, this identity applies to a square matrix over any commutative ring whatsoever. Indeed, since there is a ring map $\mathbb{Z}[X_{ij}] \rightarrow R$ satisfying $X_{ij} \mapsto r_{ij}$, the validity of the “Cayley-Hamilton” identity for (r_{ij}) as a matrix over R would follow from the corresponding identity for the “universal matrix” (X_{ij}) over the ring $\mathbb{Z}[X_{ij}]$, but this latter ring is a domain and hence Cayley-Hamilton identities over this ring may be checked by working in its fraction field (where the old linear algebra results apply!).

If we let $P_M = \det(T \cdot \id - M) = \sum \rho_jT^j \in R[T]$ denote the monic characteristic polynomial of the matrix $M = (r_{ij})$ (with determinants over a commutative ring defined in the evident manner), then Cayley-Hamilton as discussed above says $\sum \rho_jM^j = 0$ in $\text{Mat}_{N \times N}(R)$. From the definition of the r_{ij}’s, we have

$$\begin{pmatrix} ss_1 \\ \vdots \\ ss_n \end{pmatrix} = M \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix},$$

$$\begin{pmatrix} ss_1 \\ \vdots \\ ss_n \end{pmatrix} = M \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}.$$
from which it readily follows by induction (check!) that
\[
\begin{pmatrix}
 s_js_1 \\
 \vdots \\
 s_js_n
\end{pmatrix} = M^j \cdot \begin{pmatrix}
 s_1 \\
 \vdots \\
 s_n
\end{pmatrix}
\]
for all \(j \geq 0 \). Thus, adding up such identities with \(\rho_j \) multipliers thrown in yields
\[
\begin{pmatrix}
 (\sum \rho_j s^j)s_1 \\
 \vdots \\
 (\sum \rho_j s^j)s_n
\end{pmatrix} = P_M(M) \cdot \begin{pmatrix}
 s_1 \\
 \vdots \\
 s_n
\end{pmatrix} = \begin{pmatrix}
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]
since \(P_M(M) \) is the zero matrix (by Cayley-Hamilton). Entry-wise, this says \(P_M(s)s_j = 0 \) in \(R \) for all \(j \). But every element \(\sigma \in R' \) is an \(R \)-linear combination \(\sigma = \sum r_js_j \), so \(P_M(s) \cdot \sigma = \sum r_j P_M(s)s_j = \sum r_j \cdot 0 = 0 \). Taking \(\sigma = 1 \in R' \), we get \(0 = P_M(s) \cdot 1 = P_M(s) \). Hence, \(P_M \in R[T] \) is a monic polynomial for which \(P_M(s) = 0 \) (recall that \(M \) “came” from \(s \) in the sense that the entries \(r_{ij} \) of \(M \) were provided by describing how multiplication by \(s \) looks in terms of the choice of elements \(s_j \in R' \) which \(R \)-linearly span \(R' \). ■