Math 121. Automorphisms of normal extensions

Let L/k be a normal algebraic extension of fields, and let $K \subset L$ be a subfield containing k. In this handout we wish to prove a useful normality criterion for K/k in terms of the effect on K by the action of the group $\text{Aut}_k(L)$ of k-automorphisms of L.

Theorem 0.1. In the above setup, the following three conditions are equivalent:

(i) K/k is normal,
(ii) for all $\sigma \in \text{Aut}_k(L)$, $\sigma(K) = K$,
(iii) for all $\sigma \in \text{Aut}_k(L)$, $\sigma(K) \subset K$.

We will prove this theorem only when $[L:k]$ is finite, as this is the only case we will need. The general case can be reduced to this case by appropriate use of Zorn’s Lemma, etc. In the finite-degree case, certainly $[K:k]$ is finite (it is even a factor of $[L:k]$), so (ii) and (iii) are equivalent since multiplicativity of field degree implies $[K:k] = [K:\sigma(K)][\sigma(K):k]$ yet $[\sigma(K):k] = [K:k]$ since $\sigma : K \cong \sigma(K)$ is a k-isomorphism, forcing $[K:\sigma(K)] = 1$ (i.e., $\sigma(K) = K$).

Likewise, if (i) holds then (by finiteness of k-degree) we have $K = \text{split}_k(f)$ for some monic non-constant $f \in k[X]$, and hence $K = k(r_1, \ldots, r_d)$ where $f = \prod(X - r_i)$ in $k[X]$. Thus, for any $\sigma \in \text{Aut}_k(L)$ the effect of σ on L must permute the r_i's since σ preserves $f \in k[X]$. It follows that σ carries $K = k(r_1, \ldots, r_d)$ back onto itself, which is to say that (ii) holds.

The main content then is that (iii) (or (ii)) implies (i). Put another way, if K/k is not normal, we seek to construct $\sigma \in \text{Aut}_k(L)$ such that $\sigma(K)$ is not contained in K. Failure of normality implies that there is some irreducible $h \in k[X]$ with a root $r \in K$ yet for which h does not split completely over K. But L/k is normal and $r \in L$ is a root of h, so h does split completely over L. Thus, since h does not split completely over K, some root r' of h in L must fail to lie in K. It therefore suffices to find $\sigma \in \text{Aut}_k(L)$ such that $\sigma(r) = r'$ (as then $\sigma(K)$ contains $\sigma(r) = r' \notin K$, so $\sigma(K)$ is not contained in K).

To summarize, it suffices to show that for the finite normal extension L/k and any irreducible $h \in k[X]$ with a root $r \in L$ (so h splits completely over L), if $r' \in L$ is a root of h then there exists $\sigma \in \text{Aut}_k(L)$ such that $\sigma(r) = r'$. (Note that this assertion has nothing to do with an intermediate field K.) The existence of such a σ was already seen in class as part of our proof that splitting fields satisfy the property of being a normal closure, but for the convenience of the reader we now restate the relevant part of the argument.

We may assume h is monic, so $h = \prod_{i=1}^d(X - \rho_i)$ in $L[X]$. Let $F = k(\rho_1, \ldots, \rho_d) \subset L$, so F is a splitting field of h over k. Note that r, r' must be among the ρ_i's. We know that $\text{Aut}_k(F)$ acts transitively on the set of roots of h in F, so there exists $\sigma_0 \in \text{Aut}_k(F)$ such that $\sigma_0(r) = r'$. It suffices to build an automorphism σ of L extending σ_0 on F.

The normality of L over k implies that L is a splitting field of some $\varphi \in k[X]$. Thus, L is generated over k by a set of roots of φ (which in turn suffice to completely split φ over L). Hence, L is generated over F by those roots as well. Consider the given inclusion $j : F \hookrightarrow L$ and the composite inclusion $j \circ \sigma_0 : F \hookrightarrow L$ over k. These maps both express L as a splitting field of φ over F (the latter because the polynomial $\varphi \in k[X] \subset F[X]$ is unaffected by applying the k-automorphism σ_0 to its coefficients!), so by uniqueness of splitting fields there is an isomorphism $\sigma : L \cong L$ over these two inclusions of F into L. This says exactly that σ restricts to σ_0 on the subfield $j : F \hookrightarrow L$. In other words, we have built an automorphism of L which extends σ_0 on F, and we have seen above that this is sufficient for our needs.