3.6. Solution: We can assume p_1, p_2, p_3 are three distinct points, for otherwise the proof is trivial. Let a_{ij} be the intersection of L_{ij} and L_{ji}. Let $C = L_{12}L_{23}L_{31}$, $D = L_{21}L_{32}L_{13}$. Then the degrees of C and D are 3, and their intersection points are exactly $p_1, p_2, p_3, q_1, q_2, q_3, a_{12}, a_{23}, a_{31}$. By hypothesis, exactly three points q_1, q_2, q_3 lie on the line M. Proposition 3.14 says that the remaining points $p_1, p_2, p_3, a_{12}, a_{23}, a_{31}$ lie on a curve E of degree at most 2. By hypothesis, p_1, p_2, p_3 lie on the line L, using Bezout’s Theorem, we see that L is a component of E, and hence E is a union of two lines. The other component of E, which is a line, must pass through a_{12}, a_{23}, a_{31} since a_{12}, a_{23}, a_{31} do not lie on L.