Question 1. Recall that in class we used the free resolution from HW4 Q4(g) to compute for $G = \mathbb{Z}/2 = \{1, s\}$ that

$$H^k(\mathbb{Z}/2; M) = \begin{cases} M^G & k = 0 \\ \{m \in M | sm + m = 0 \} & k = 1, 3, 5, \ldots \\ \{m \in M | sm = m \} & k = 2, 4, 6, \ldots \end{cases}$$

For $G = \mathbb{Z}/n = \{1, s, \ldots, s^{n-1}\}$, find a similar description of $H^k(\mathbb{Z}/n; M)$ for a $\mathbb{Z}G$-module M. (Hint: find a free resolution of \mathbb{Z} as a $\mathbb{Z}G$-module; note that $\mathbb{Z}G \cong \mathbb{Z}[s]/(s^n - 1)$.

The resolution will again be 2-periodic just like for $\mathbb{Z}[s]/(s^2 - 1)$.

Solution. Let $R = \mathbb{Z}G \cong \mathbb{Z}[s]/(s^n - 1)$. We want to compute a resolution for the R-module \mathbb{Z}, where s acts by the identity. This is generated by the single element 1, so we have a surjection $d_0: R \to \mathbb{Z}$ sending $1 \in R$ to $1 \in \mathbb{Z}$. Then R-linearity forces d_0 to send $a_0 + a_1 s + \cdots + a_{n-1} s^{n-1}$ to $a_0 + a_1 + \cdots + a_{n-1}$.

Thus, the kernel of d_0 is the “augmentation ideal” $I = \{a_0 + a_1 s + \cdots + a_{n-1} s^{n-1} | a_0 + a_1 + \cdots + a_{n-1} = 0\}$.

We claim that $I = (s - 1)$. Certainly $s - 1 \in I$, so we have $(s - 1)R \subseteq I$. To see the other inclusion, consider some $r = a_0 + a_1 s + \cdots + a_k s^k \in I$. We prove that $r \in (s - 1)$ by induction on k. If $k = 0$, since $r \in I$ we know $a_0 = 0$, and certainly $r = 0$ belongs to $(s - 1)$. If $k \geq 1$, consider

$$r' = r - (s - 1)a_k s^{k-1} = r - a_k s^k + a_k s^{k-1} = a_0 + a_1 s + \cdots + (a_{k-1} + a_k) s^{k-1}.$$

By induction $r' \in (s - 1)$, and thus $r \in (s - 1)$ as well.

Thus, we have a presentation:

$$R \xrightarrow{d_1} R \xrightarrow{d_0} \mathbb{Z} \longrightarrow 0$$

Now, we need to compute the kernel of d_1, i.e. the ideal $\{r \in R | (s - 1)r = 0\}$. Given $r = a_0 + a_1 s + \cdots + a_{n-1} s^{n-1}$, we compute

$$(s - 1)r = (a_{n-1} - a_0) + (a_0 - a_1) s + \cdots + (a_{n-2} - a_{n-1}) s^{n-1}.$$

Therefore $(s - 1)r = 0$ iff $a_0 = a_1$ and $a_1 = a_2$ and ... and $a_{n-2} = a_{n-1}$ and $a_{n-1} = a_0$. Therefore

$$\ker d_1 = \{r \in R | (s - 1)r = 0\} = \{a_0(1 + s + \cdots + s^{n-1})\}.$$

Let N_n denote $N_n = 1 + s + \cdots + s^{n-1} \in \mathbb{Z}G$, so $\ker d_1 = (N_n)$. This gives us the next term of our free resolution:

$$\begin{array}{c} R \xrightarrow{d_2} R \xrightarrow{d_1} R \xrightarrow{d_0} \mathbb{Z} \longrightarrow 0 \end{array}$$

To find $\ker d_2$ we compute that given $r = a_0 + a_1 s + \cdots + a_{n-1} s^{n-1}$,

$$N_n r = (\sum a_i) + (\sum a_i) s + \cdots + (\sum a_i) s^{n-1} = (\sum a_i) N_n.$$
It follows that $\ker d_2$ is the ideal I from above where $\sum a_i = 0$, which we already proved is equal to $(s - 1)$. Thus, we have a 2-periodic resolution:

$$
\cdots \to R \xrightarrow{d_{2n}} R \xrightarrow{d_{2n-1}} R \xrightarrow{d_{2}} R \xrightarrow{d_{1}} R \xrightarrow{d_{0}} \mathbb{Z} \to 0
$$

i.e. the even differentials are multiplication by N_n and the odd differentials are multiplication by $(s - 1)$.

To calculate $H^k(\mathbb{Z}/n; M) = \text{Ext}^k_{\mathbb{Z}/n}(\mathbb{Z}, M)$ we will apply the contravariant right-exact functor $\text{Hom}_R(\cdot, M)$ to the above free resolution. We use the fact (explained in more detail in the solutions for HW5) that $\ker(\delta^k) = \text{im}((s - 1))$ for k even, this is $\ker(N_n) = \{m \in M \mid s^{n-1} \cdot m + s^{n-2} \cdot m + \cdots + m = 0\}$.

We have $\ker(N_n) = \{m \in M \mid s^{n-1} \cdot m + s^{n-2} \cdot m + \cdots + m = 0\}$. Defining $N : M \to M$ by

$$
N(m) = N_n \cdot m = s^{n-1} \cdot m + \cdots + m = \sum_{g \in \mathbb{Z}/n} g \cdot m.
$$

Thus, we have $H^k(\mathbb{Z}/n; M) = \ker((s - 1))/\text{im}((s - 1))$. For k odd, this is $\ker(N)/\text{im}((s - 1))$. We have $\ker(N) = \{m \in M \mid s^{n-1} \cdot m + s^{n-2} \cdot m + \cdots + m = 0\}$.

Finally, for $k = 0$, we have $H^0(\mathbb{Z}/n; M) = \ker \delta^1 = \{m \in M \mid s m = m\} = M^G/N(M)$, as we know we must. Putting this all together, we have:

$$
H^k(\mathbb{Z}/n; M) = \begin{cases}
M^G & k = 0 \\
\{m \in M \mid N(m) = 0\}/\{sn - n \mid n \in M\} & k = 1, 3, 5, \ldots \\
M^G/N(M) & k = 2, 4, 6, \ldots
\end{cases}
$$

Question 2. Let G be a group.

(a) Prove that $H^0(G; \mathbb{Z}G) \cong \mathbb{Z}$ if G is finite, and $H^0(G; \mathbb{Z}G) = 0$ if G is infinite.

(b) Prove that $H^1(G; \mathbb{Z}G) \neq 0$ if $G = \mathbb{Z} = \{\ldots, t^{-1}, 1, t, \ldots\}$.

(c) (Hard, very optional) Can you find another group for which $H^1(G; \mathbb{Z}G) \neq 0$?

1If \mathbb{Z}/n is the Galois group of a field extension L/K and $M = L^\times$, then N is the norm map $N_{L/K}$ as in Question 3. (If M is the additive group $M = L$, then N is the trace map $\text{Tr}_{L/K}$.) This is an important construction in algebraic number theory.
(a) Since $H^0(G; M) = M^G$ for any group G and G-module M, we need to compute $(ZG)^G$.

Consider an arbitrary $\alpha = \sum_{g \in G} a_g \cdot g \in ZG$, where by definition $a_g = 0$ for all but finitely many g.

To be G-invariant (i.e. to lie in $(ZG)^G$) means that $h \cdot \alpha = \alpha$ for all $h \in g$; in other words, for any $h \in G$

$$\sum_{g \in G} a_g \cdot (hg) = \sum_{g \in G} a_g \cdot g.$$ \hspace{1cm}

Comparing coefficients of h on each side, we have that $a_1 = a_h$ for all $h \in G$. If G is infinite, this is a contradiction unless $a_1 = 0$ (since only finitely many coefficients can be nonzero), so $H^0(G; ZG) = 0$ in this case. If G is finite, on the other hand, we find that $(ZG)^G = \{a_1(\sum_{g \in G} g)\} \cong Z$.

(b) Note that $ZG \cong Z[s, s^{-1}] =: R$, the ring of Laurent polynomials in the variable s. We computed in class that $H^1(G = Z; M) = \text{coker}(t - 1: M \to M) \cong M_G$ (but see below for a reminder of the proof if you forgot it). Note that $\text{coker}(t - 1: M \to M) = M/(t - 1)M = M \otimes_R (R/((t - 1))$. Therefore when we take $M = ZG = R$, we find

$$H^1(G = Z; ZG) = R \otimes_R (R/((t - 1)) \cong R/((t - 1) \cong Z \neq 0.$$ \hspace{1cm}

Refresher on $H^*(G = Z; M)$: We need to compute at least the first two terms of a free resolution of the trivial G-module Z. Since 1 generates Z, we have a surjection $d_0: R \twoheadrightarrow Z$ sending $a_{-n}s^{-n} + \cdots + a_ms^m$ to $a_{-n} + \cdots + a_m$. The kernel I of d_0 includes the principal ideal $(s - 1)R$, and we want to show that this is the entire kernel. The argument is nearly identical to the one in Question 1. We may induct on m to show that if $p(s) \in I$, then $p(s) = q(s)(s - 1) + r(s)$ with $r(s) \in Z[s^{-1}]$ and $q(s) \in R$ (even $q(s) \in Z[s]$). Then since $q(s)(s - 1) \in I$, we have that $r(s) \in I$ as well. But $(s - 1) = -s(s^{-1} - 1)$, and $-s$ is a unit in R. So now it suffices to show that $r(s) \in I \cap Z[s^{-1}]$ is in $(s^{-1} - 1)Z[s^{-1}]$, which is the same argument as before. Now, we have:

$$R \xrightarrow{d_1} R \xrightarrow{d_0} Z \to 0$$ \hspace{1cm}

But $R = (Z[s])[\frac{1}{s}]$ is a domain, so d_1 is injective, and we have:

$$\cdots \to 0 \xrightarrow{d_2} R \xrightarrow{d_1} R \xrightarrow{d_0} Z \to 0$$ \hspace{1cm}

(and for $n \geq 3$, all terms are 0). Applying the contravariant functor $\text{Hom}_R(\cdot, M)$, we get the following complex computing $H^k(Z; M)$:

$$0 \to M \xrightarrow{\delta^1} M \xrightarrow{\delta^2} \cdots$$ \hspace{1cm}

Thus, we have $H^0(Z; M) = \ker \delta^1 = \{m \in M \mid sm = m\} = M^G$ and $H^1(Z; M) = \ker(\delta^2)/ \text{im}(\delta^1) = M/\{sm - m \mid m \in M\}$ and $H^k(Z; M) = 0$ for all $k \geq 2$ and all G-modules M. Now, taking $M = ZG$, we compute $H^1(Z; ZG)$. But this is $R/\{sr - r \mid r \in R\} = R/(s - 1)R \cong Z$, as we saw above. Thus, $H^1(Z; ZG) = Z$. \hspace{1cm}

3
(c) It turns out that $H^1(G; \mathbb{Z}G) = 0$ whenever G is finite (though this is not easy to prove2), so we need to look to infinite groups.

An satisfactory, but perhaps unsatisfying, example would be to take $G = \mathbb{Z} \times \mathbb{Z}/n$. Then $H^1(G; \mathbb{Z}G) \cong H^1(\mathbb{Z}; \mathbb{Z}G) \cong \mathbb{Z}$, essentially by a combination of the argument for $G = \mathbb{Z}$ and a computation for $G = \mathbb{Z}/n$ (using the answer from Q1).

Remarks from TC: To find more interesting examples that do not essentially come from \mathbb{Z}, we must turn to infinite non-abelian groups. For specific groups, this can be computed by hand (if the right group is chosen).

For a general way to understand why some of these examples work, here is one way to think about it (which obviously you were not expected to do). Suppose there is a contractible space X on which G acts nicely by homeomorphisms, so that every point in X is fixed by at most finitely many elements, and so that the quotient X/G is compact. Then it turns out3 that $H^1(G; \mathbb{Z}G) \cong H^1_c(X; \mathbb{Z})$, where H^1_c is the compactly-supported cohomology of the topological space X. Here are some examples where this setup applies and $H^1_c(X) \neq 0$:

- $G = F_m$, the free group on n generators; X = an infinite $2n$-regular tree
- the infinite dihedral group D_∞; $X = \mathbb{R}$ (here the computation that $H^1_c(X) \neq 0$ is especially easy)
- $G = \text{SL}_2(\mathbb{Z})$ or any finite-index subgroup of it; X = the upper half plane \mathbb{H}^2 with balls around $\mathbb{Q} \cup \{\infty\}$ removed (so that X/G is the modular curve, with a neighborhood of the cusp removed to make it compact)

These are all “1-dimensional virtual duality groups” (see §VIII.10 of Brown’s book), and such a group will always have $H^1(G; \mathbb{Z}G) \neq 0$, although other examples are possible.

Question 3. Let L/K be a finite Galois extension with Galois group $G = \text{Gal}(L/K)$. The unit group L^\times is an abelian group with an action of G, so we may consider the group cohomology $H^k(G; L^\times)$. A theorem of Noether states that $H^1(G; L^\times) = 0$; you may assume this without proof.

(a) Use Noether’s theorem to prove that if $\text{Gal}(L/K)$ is generated by a single element s, then every element $\ell \in L$ with norm 1 has4 the form $s(z)/z$ for some $z \in L$.

(b) Use part (a) to give a parametrization in two rational parameters of the rational points on the unit circle:

\[
S^1(\mathbb{Q}) = \{(x \in \mathbb{Q}, y \in \mathbb{Q}) \mid x^2 + y^2 = 1\}.
\]

That is, give two rational functions $x(a, b) \in \mathbb{Q}(a, b)$ and $y(a, b) \in \mathbb{Q}(a, b)$ such that the resulting function $f: \mathbb{Q}^2 \to \mathbb{Q}^2$ given by $(a, b) \mapsto (x(a, b), y(a, b))$ has image $S^1(\mathbb{Q})$.

2for those who want a reference, it follows from the fact that $\mathbb{Z}G$ is “co-induced” from the trivial group when G is finite, together with Shapiro’s lemma

3This is proved as Prop. VIII.7.5, pp. 209, in the book *Cohomology of Groups* by Brown (available for free download via the Stanford library by clicking here); plus Exercise VIII.7.4 for the finite stabilizers.

4Recall that for a Galois extension L/K the norm $N^L_K: L \to K$ is given by $N^L_K(\ell) = \prod_{g \in \text{Gal}(L/K)} g \cdot \ell$.

4
Solution. (a) If $G = \text{Gal}(L/K)$ is generated by a single element s, then $\text{Gal}(L/K) \simeq \mathbb{Z}/n$, where n is the order of s. Then we can use Question 1 to compute the group cohomology

$$H^1(G; L^\times) = H^1(\mathbb{Z}/n; L^\times) = \{ \ell \in L^\times \mid N(\ell) = 1 \}/\{sz - z \mid z \in L^\times \}$$

Here, $N(\ell) = (\ell) * (s \cdot \ell) * (s^2 \cdot \ell) * \cdots * (s^{n-1} \cdot \ell)$ is as defined in Question 1. We can see that $N(\ell) = N_K^L(\ell)$. (Note that in Question 1, we write the group operation on the abelian group M as $+$ and the identity as 0, but for L^\times, the group operation is multiplication and the identity is 1.) Thus, Noether’s theorem tells us that since $H^1(G; L^\times) = 0$, any $\ell \in L^\times$ with $N_K^L(\ell) = 1$ is of the form $s(z)/z$ for some $z \in L^\times$.

(b) Let $K = \mathbb{Q}(i) = \{ a + bi \mid a, b \in \mathbb{Q}, i^2 = -1 \}$. This is a degree two field extension of \mathbb{Q}, which is therefore Galois with Galois group $\mathbb{Z}/2$. The nontrivial element of the group is $s: i \mapsto -i$ (i.e. because the minimal polynomial of i is $x^2 + 1$, and the roots of this are exactly $\pm i$). Therefore, we have $N_K^\mathbb{Q}(x + yi) = (x + yi)s(x + yi) = x^2 + y^2$. Thus, the previous part of the problem implies that if $x^2 + y^2 = 1$ for $(x, y) \in \mathbb{Q}^2$, then there is some $a + ib \in K^\times$ with

$$x + iy = \frac{s(a + bi)}{(a + bi)} = \frac{(a - bi)}{(a + bi)} = \frac{(a - bi)^2}{a^2 + b^2} = \frac{a^2 - b^2}{a^2 + b^2} + \frac{-2ab}{a^2 + b^2}i$$

Thus, $x = x(a, b) := \frac{a^2 - b^2}{a^2 + b^2}$ and $y = y(a, b) := \frac{-2ab}{a^2 + b^2}$. Thus, the map $(a, b) \mapsto (x(a, b), y(a, b))$ from \mathbb{Q}^2 to \mathbb{Q}^2 contains $S^1(\mathbb{Q})$ in its image. Note that this map is defined everywhere on $\mathbb{Q}^2 \setminus \{(0, 0)\}$, since $a^2 + b^2 \neq 0$ unless $(a, b) = (0, 0)$.

We should also check that the image is contained in $S^1(\mathbb{Q})$. This can be checked simply by summing the squares of the right hand side; alternately, our computation in (a) [or in Q1] shows that any element of the form $w = s(z)/z$ automatically has $N(w) = N(s(z))/N(z) = 1$.

5
Given a chain complex \(C \ldots \to C_2 \to C_1 \to C_0 \to 0 \) and a chain map \(f: C \to C \):

We call \(f \) an **involution** if \(f \circ f = \text{id} \).

We call \(f \) a **weak involution** if there is a homotopy \(f \circ f \sim \text{id} \).

Question 4. Give an example of a chain complex \(C \) and a weak involution \(f: C \to C \) that is not an involution.

Solution. If all maps \(d \) of the complex \(C \) are 0, then a chain homotopy between two maps from \(C \) to \(C \) must vanish, so \(f \) is an involution iff it is a weak involution. Therefore, we need a sequence with at least one non-zero map. Let’s pick the easiest possible sequence:

\[
C = \cdots \to 0 \to \mathbb{Z} \xrightarrow{d} \mathbb{Z} \to 0
\]

We consider the left-hand term to be in degree 1 and the right-hand term to be in degree 0 (although this doesn’t affect anything).

Our first claim is that a chain map \(g: C \to C \) must have \(g_0 \) and \(g_1 \) being the same map (i.e. multiplication by the same \(n \)). Since all homomorphisms from \(\mathbb{Z} \) to \(\mathbb{Z} \) are given by multiplication by some element of \(\mathbb{Z} \), a chain map from \(C \) to \(C \) is a diagram of the following form:

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{d} & \mathbb{Z} \\
\downarrow{m} & & \downarrow{n} \\
\mathbb{Z} & \xrightarrow{d} & \mathbb{Z}
\end{array}
\]

The fact that it is a chain map implies that \(n \circ d = d \circ m \), so \(n = m \) (since \(d = \text{id} \)).

Our second claim is that any chain map \(C \to C \) is homotopic to any other; equivalently, that any chain map \(g: C \to C \) is homotopic to 0. Indeed, a homotopy from \(g \) to 0 is a choice of map \(h_0: C_0 \to C_1 \) such that \(g_0 = d \circ h_0 \) and \(g_1 = h_0 \circ d \) (since all other terms in the definition vanish). But we have already seen that \(g_0 = g_1 \) and \(d = \text{id} \), so we can simply take \(h_0 = g_0 \).

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\text{id}} & \mathbb{Z} \\
\downarrow{n} & & \downarrow{n} \\
\mathbb{Z} & \xrightarrow{\text{id}} & \mathbb{Z}
\end{array}
\]

In particular, this means that every \(f: C \to C \) is a weak involution (since \(f \circ f \) will be homotopic to \(\text{id} \) no matter what it is). Therefore we can take any \(f \) which is not actually an involution; this is accomplished by taking any \(n \in \mathbb{Z} \setminus \{ -1, 1 \} \).

Question 5. (Optional, replaces Q4) Give an example of a chain complex \(C \) and a weak involution \(f: C \to C \) that is not homotopic to an involution.

(That is, there does not exist any involution \(g: C \to C \) with \(g \circ g = \text{id} \) and \(f \sim g \).)

Solution. Let us return to our example with \(C_0 = C_1 = \mathbb{Z} \) and \(d: C_1 \to C_0 \) is multiplication by some \(d \in \mathbb{Z} \setminus \{ 0 \} \), but this time we will take some other \(d \) than 1:

\[
C = \mathbb{Z} \xrightarrow{d} \mathbb{Z}
\]
The same argument as before shows that any chain map \(g : C_\bullet \to C_\bullet \) has to have both \(g_0 \) and \(g_1 \) be multiplication by the same \(m \in \mathbb{Z} \) (using just that \(\mathbb{Z} \) is a domain and \(d \neq 0 \)). Therefore we can speak simply about the chain map \(m : C_\bullet \to C_\bullet \) for \(m \in \mathbb{Z} \).

First, let us understand when two such maps are homotopic. A homotopy \(n \sim m \) means exactly that there is some map \(h_0 : C_0 \to C_1 \) with \(n - m = d \circ h_0 \) and \(n - m = h_0 \circ d \). This is possible if and only if \(d \) divides \(n - m \) (in which case we take \(h_0 : C_0 \to C_1 \) to be multiplication by \(\frac{n-m}{d} \)). To sum up, two chain maps \(n \) and \(m \) are homotopic if and only if \(n \equiv m \mod d \).

Therefore if \(f : C_\bullet \to C_\bullet \) is multiplication by \(n \), we see that \(f \) is a weak involution iff \(n^2 \equiv 1 \mod d \). As for actual involutions, the only involutions are multiplication by 1 or \(-1\). Therefore \(f \) is homotopic to an actual involution iff \(n \equiv \pm 1 \mod d \).

So to find a weak involution that is not homotopic to an involution, we must find some \(n \) such that \(n^2 \equiv 1 \mod d \) but \(n \not\equiv \pm 1 \mod d \). This is impossible if \(d \) is prime, but as long as \(d \) has more than 1 odd prime factor (or \(d \) is divisible by 8, or \(d \) is divisible by both 4 and an odd prime) we can do it (thanks to the Chinese Remainder Theorem, plus knowledge of the structure of \((\mathbb{Z}/p^k)^\times \)). For example, we could take \(d = 15 \) and \(n = 4 \); or \(d = 8 \) and \(n = 3 \); or \(d = 12 \) and \(n = 5 \).