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Question 1. Consider a short exact sequence 0→ A
α−→ B

β−→ C → 0.
Prove that the following are equivalent.

(A) There exists a homomorphism σ : C → B such that β ◦ σ = idC .

(B) There exists a homomorphism τ : B → A such that τ ◦ α = idA.

(C) There exists an isomorphism ϕ : B → A⊕C under which α corresponds to the inclusion A ↪→ A⊕C
and β corresponds to the projection A⊕ C � C.

When these equivalent conditions hold, we say the short exact sequence 0→ A
α−→ B

β−→ C → 0 splits. We

can also equivalently say “β : B → C splits” (since by (i) this only depends on β) or “α : A→ B splits” (by (ii)).

Solution. (A) =⇒ (B): Let σ : C → B be such that β ◦ σ = idC . Then we can define a homomorphism
P : B → B by P = idB −σ ◦ β. We should think of this as a projection onto A, in that P maps B into
the submodule A and it is the identity on A (which is exactly what we’re trying to prove). Equivalently,
we must show P ◦ P = P and im(P ) = A. It’s often useful to recognize the fact that a submodule
A ⊆ B is a direct summand iff there is such a projection.

Now, let’s prove that P is a projection. We have β ◦ P = β − β ◦ σ ◦ β = β − idC ◦β = 0. Thus, by
the universal property of the kernel (as developed in HW2), P factors through the kernel α : A→ B.
In other words, there is a unique map τ : B → A such that α ◦ τ = P , i.e. the image of P is contained
in the image of α. But then we have α ◦ (τ ◦α) = P ◦α = α− σ ◦ β ◦α = α, since β ◦α = 0. Thus,
for all a ∈ A, α(a) = α(τ(α(a))); since α is injective this means that a = τ(α(a)), or τ ◦ α = idA..

(B) =⇒ (C): We define ϕ : B → A ⊕ C by using the universal property of A ⊕ C ' A × C: a map
from B to A× C is specified uniquely by specifying maps from B to A and B to C. So consider the
map ϕ = τ × β, with τ : B → A such that τ ◦ α = idA. First, note that p2 ◦ ϕ = β, by definition
of ϕ (see the previous homework problem on the universal property of direct sums/products), where
p1 is the projection A ⊕ C −� C. In addition, ϕ ◦ α = (τ ◦ α) × (β ◦ α) = idA×0: this is the
map A ↪−→ A ⊕ C given by inclusion of the first factor. So we’re done once we show that ϕ is an
isomorphism. To do this, assume that ϕ(b) = 0, which says exactly that β(b) = 0 and τ(b) = 0. Since
β(b) = 0, b ∈ kerβ = imα, so there is a unique (because α is injective) a ∈ A such that b = α(a).
Then, we have 0 = ϕ(b) = ϕ(α(a)) = (τ(α(a)), β(α(a)) = (a, 0), so a = 0 and thus b = 0 (here we
used the hypothesis that τ ◦ α = idA).

(C) =⇒ (A): Let i2 : C → A⊕ C be the inclusion of the direct summand C, i.e. c 7→ (0, c). We’ll define
σ : C → B as ϕ−1 ◦ i. We need to show that β ◦ σ = idC . But by assumption, p2 ◦ϕ = β, with p2 the
canonical projection A⊕C −� C. Thus, p2 = β ◦ϕ−1, because ϕ is an isomorphism. Now, we have:

β ◦ σ = β ◦ ϕ−1 ◦ i = p2 ◦ i2 = idC

by definition of p2 and i2.
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Question 2. Given an R-module, prove that the following are equivalent.

(A) Every short exact sequence 0→ A→ B →M → 0 splits.

(B) There exists some R-module N such that M ⊕N is free.

When these equivalent conditions hold, we say that the R-module M is projective.

Solution. (A) =⇒ (B): For any R-module M , there is a set I and a surjection R⊕I −� M from a free
module. It is important to understand why! (For example, we could take I =M and map em 7→ m for
each m ∈M ; this is obviously surjective.)

Then, letting A be the kernel of this surjection, we have a short exact sequence:

0→ A→ RI →M → 0

But by hypothesis (A), this short exact sequence splits. So in particular M ⊕A ' RI , which is free.

(B) =⇒ (A): Let

0 // A
α // B

β
//M // 0

be an exact sequence, and let N be an R-module such that M ⊕N ' F , with F a free module. We
want to show that the exact sequence splits, i.e. we have a map σ : M → B such that β ◦ σ = idM .
We use the following lemma, which is useful all over the place.

Lemma 1. Suppose that 0→ A
α−→ B

β−→ C → 0 and 0→ D
δ−→ E

ε−→ F → 0. Then

0→ A⊕D α⊕δ−−→ B ⊕ E β⊕ε−−→ C ⊕ F → 0

is also a short exact sequence.

Proof. It suffices to observe that im(f ⊕ g) = im(f)⊕ im(g) and ker(f ⊕ g) = ker(f)⊕ ker(g).

So by adding our original exact sequence to 0⊕ 0⊕N idN−−→ N → 0, we get an exact sequence:

0 // A
α⊕0

// B ⊕N β⊕idN //M ⊕N // 0

Now, we have the following fact:

Lemma 2 (Free modules are projective). Any exact sequence 0→ A→ B
β−→ F → 0 where F is a

free module splits.

Proof. Let (ei)i∈I be a basis for F . Since β is surjective, for each i we can choose bi ∈ B such that
β(bi) = ei. Define the map σ : F → B by specifying σ(ei) = bi (by the universal property of free
modules, this defines a unique homomorphism σ : F → B). Then, β ◦ σ(ei) = β(bi) = ei, so β ◦ σ
and idF are two R-module homomorphisms F → F which agree on the generating set (ei)i∈I , so they
are equal (by Q1 on HW1). Thus, the exact sequence splits.

Applying this to the current situation, using the fact that M ⊕ N is free, there is a homomorphism
σN : M ⊕ N → B ⊕ N such that (β ⊕ idN ) ◦ σN = β ⊕ idN . Note that σN (0, n) = (0, n) and
σN (b, 0) = (something, 0). Define σ : B →M by σN (b) = (σ(b), 0). The fact that (β⊕ idN )◦σN =

β ⊕ idN implies β ◦ σ = β, so this is the desired splitting of the original exact sequence.

2



Question 4. Let R be a commutative ring, and let M be a finitely generated R-module.
Prove that if α : M →M is surjective, then it is an isomorphism.

(Note the following useful consequence: any n elements that generate Rn are actually a basis of Rn.)

Solution. We first prove the seemingly-simpler statement:

Lemma 3. Let A be a commutative ring, and let M be a finitely generated A-module. Fix some a ∈ A. If
multiplication by a is surjective (as a homomorphismM →M ), then it is injective (and thus an isomorphism).

Proof of lemma. We prove this by induction on the number of generators of M . First, assume that M is
generated by a single element x. Since multiplication by a is surjective, choose y with a · y = x. Since x
generates M , we can write y as a linear combination y = b · x for some b ∈ A. Note that y also generates M
(since a · y = x, so linear combinations of y include those of x).

Suppose that a · z = 0 for some z ∈M . Since x generates M , we can write z = c · x for some c ∈ A.
Now on the one hand we have

ba · z = b · (a · z) = b · 0 = 0.

But on the other hand, since A is commutative this is equal to

ba · z = ba · cx = bac · x = c · (a · (b · x)) = c · (a · y) = c · x = z.

Therefore z = 0. This shows that z 7→ a · z is injective, as desired. This concludes the base case.

We now assume that M is generated by n+ 1 elements x1, . . . , xn, w, and that the lemma is proved for
all modules generated by ≤ n elements. Let N ⊂M be the submodule generated by x1, . . . , xn.

First, we claim that multiplication by a is surjective as a homomorphism M/N →M/N . Indeed, given
any m ∈M/N , lift it to m ∈M . By hypothesis, there exists m′ ∈M with a ·m′ = m; therefore

a ·m′ = a ·m′ = m.

This shows that multiplication by a on M/N is surjective. Since M/N is generated by the single element w,
our base case implies that multiplication by a on M/N is injective.

We next claim that multiplication by a is surjective as a homomorphism N → N . Consider n ∈ N .
By hypothesis, there exists p ∈ M with a · p = n (but we might worry that p /∈ N ). However, note that
a · p = a · p = n = 0 ∈M/N . Since multiplication by a on M/N is injective, this implies p = 0 ∈M/N ;
in other words, p ∈ N . This verifies that multiplication by a on N is surjective. Since N is generated by n
elements, our inductive hypothesis implies that multiplication by a on N is injective.

Now suppose that a ·m = 0 for some m ∈ M . We have a ·m = a ·m = 0 ∈ M/N . Since αM/N is
injective, this implies m = 0 ∈ M/N ; in other words, m ∈ N . But we know that multiplication by a is
injective on N , so having m ∈ N and a ·m = 0 implies that m = 0. Therefore multiplication by a on M is
injective, as desired.

To solve the original problem, we apply the lemma with A = R[T ]. We define the structure of an
A-module on M by T ·m := α(m); the universal property of polynomial rings means this uniquely defines
an A-module structure. If M was generated by x1, . . . , xn as an R-module, it is certainly still generated by
those elements as an A-module (since the A-linear combinations contain the R-linear combinations). So we
can apply the lemma to conclude that multiplication by T is injective, i.e. that α is injective.
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Question 5. Let M be a finitely generated R-module. Prove that the following are equivalent.

(A) There exists a short exact sequence 0 → A → F → M → 0 where F is a finitely generated free
module and A is finitely generated.

(B) For every short exact sequence 0→ Q→ F →M → 0 where F is a finitely generated free module,
Q is finitely generated.

When these equivalent conditions hold, we say that the R-module M is finitely presented.

Solution. Since M is assumed to be finitely generated, there is always at least one short exact sequence of
the form 0 → A → F → M → 0 with F a free module, so the fact that (B) implies (A) is trivial. Let’s
show the converse. There are many different ways to proceed, all essentially equivalent (even if they look
different).

Proof #1: (sketch) Suppose x1, . . . , xn generate M , such that all linear dependences between the xi are
a consequence of finitely many relations, say ` relations (the xi correspond to a basis for F and the relations
correspond to generators for A).

Suppose we have another generating set y1, . . . , yk for M . Since x1, . . . , xn generate M , we can write
y1 = a1x1 + · · ·+ anxn, and similarly y2 = b1x1 + · · ·+ bnxn, and so on. Using these k relations, we can
substitute to convert any dependence between the yj into a linear combination of the xi (which must be a
linear dependence because it’s equal to 0). But any dependence between the xi is a consequence of our `
relations from above. Therefore we obtain `+ k relations between the yj so that all relations among the yj
are a consequence.

(This proof is obviously sketchy, but you should keep it in mind when reading the argument below. Can
you see which parts correspond to which parts?)

Proof #2: Fix a presentation 0 → A → F
β−→ M → 0 with F free and A,F finitely generated. Now

consider some other presentation 0→ Q→ G→M → 0 with G finitely generated and free. We must show
that Q is finitely generated.

We can form a commutative diagram as below:

0 // A
α //

ψ
��

F
π //

ϕ
��

M //

=

��

0

0 // Q
α′ // F ′

π′ //M // 0

In order to do this, we define ϕ by mapping each basis element ei of F to some element fi ∈ F ′ such that
π′(fi) = π(ei). Then since π′ ◦ ϕ = π, ϕ maps kerπ = imα into kerπ′ = imα′, so we get the map ψ. We
can also describe why ψ exists by the universal property of the kernel: π′ ◦(ϕ◦α) = (π′ ◦ϕ)◦α = π ◦α = 0,
so (ϕ ◦ α) factors through α′ : Q→ F .

We can show that Q/ imψ ' F ′/ imϕ as follows: since α′ ◦ ψ = ϕ ◦ α, α′ maps imψ into imϕ, so it
induces a well-defined map Q/ imψ → F ′/ imϕ. Let [q] ∈ Q/ imψ be an element of the kernel of this map
with q ∈ Q, so α′(q) = ϕ(f) for some f ∈ F . Since π′(α′(q)) = 0, we get that π′(ϕ(f)) = π(f) = 0, so
f = α(a) for some a ∈ A. Thus, α′(q) = ϕ(α(a)) = α′(ψ(a)). Since α′ is an injective homomorphism,
this implies that q = ψ(a), so q ∈ imψ as desired. Thus, the map Q/ imψ → F ′/ imϕ is injective. Now,
let’s see that it’s also surjective. Let f ′ ∈ F ′: we want to find some q ∈ Q such that α′(q) = f ′ + ϕ(f) for
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some f ∈ F . Since π is surjective, there is some f ∈ F such that π(f) = π′(f ′). But π(f) = π′(ϕ(f)), so
π′(f ′ − ϕ(f)) = 0. Thus, there is some q ∈ Q such that α′(q) = f ′ − ϕ(f), which is exactly what we’re
looking for.

Now, F ′/ imϕ is a quotient of the finitely generated module F ′, so it is finitely generated. In addition,
imψ is a quotient of the finitely generated module A, so it is finitely generated as well. Finally, we have an
exact sequence 0 → imψ → Q → Q/ imψ → 0, so since imψ and Q/ imψ are finitely generated, Q is
finitely generated (by a previous homework exercise).
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Question 7. If we set L(f) = f
S , this gives a set function

L : HomR(M,N)→ HomR[ 1
S
](S
−1M,S−1N).

Observe that L is actually R-linear (you do not need to prove this).

Prove that if M is finitely presented, then L is the localization map of the R-module HomR(M,N).
More precisely, for any M the universal property gives a map

L′ : S−1HomR(M,N)→ HomR[ 1
S
](S
−1M,S−1N);

you must prove that if M is finitely presented, then L′ is an isomorphism.

Solution. 1 First, we prove the theorem in the case when M is a finitely generated free module F ∼= Rk. We
can identify HomR(F,N) with the set of maps of sets from {e1, . . . , ek} to N . Such a map is the same thing
as an k-tuple of elements of N , so we can also identify HomR(F,N) with Nk.

If F ∼= Rk then S−1F ∼= R[ 1S ]
k, since S−1 commutes with direct sums. Furthermore, the ei

1 = `(ei)

are a basis for S−1F , so if f sends ei to ni ∈ N , then f
S sends ei

1 to ni
1 . Identifying Hom(S−1F, S−1N)

with (S−1N)k as above, we see that L(n1, . . . , nk) = (`(n1), . . . , `(nk)). Therefore L is none other than
the localization map Nk → S−1(Nk) ' (S−1N)k, and L′ is (under this identification) the identity.

We now want to use this to prove the theorem for a general finitely presented module M . Since M is
finitely presented, there is some exact sequence:

F1 → F2 →M → 0

with F1, F2 free and finitely generated (i.e. the kernel of F2 −�M is finitely generated, with generating set
parametrized by a basis of F1). By Question 3, we have an exact sequence:

0→ Hom(M,N)→ Hom(F2, N)→ Hom(F1, N)

In other words, we can identify Hom(M,N) with the kernel of the induced map Hom(F2, N)→ Hom(F1, N).
By question 6, we can apply S−1 to this to get an exact sequence

0→ S−1Hom(M,N)→ S−1Hom(F2, N)→ S−1Hom(F1, N)

In other words,

S−1Hom(M,N) is the kernel of the map S−1Hom(F2, N)→ S−1Hom(F1, N) (∗)

Now back up and apply S−1 to our original exact sequence; by Question 6 we get:

S−1F1 → S−1F2 → S−1M → 0

and again by Question 3 we get:

0→ Hom(S−1M,S−1N)→ Hom(S−1F2, S
−1N)→ Hom(S−1F1, S

−1N)

1To make notation a little easier, I’m going to drop the subscripts on the Hom-modules; if A,B are R-modules, when I write
Hom(A,B), I mean HomR(A,B), and when I write Hom(S−1A,S−1B) I mean HomR[ 1

S
](S
−1A,S−1B)
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In other words,

Hom(S−1M,S−1N) is the kernel of the map Hom(S−1F2, S
−1N)→ Hom(S−1F1, S

−1N). (∗∗)

We are now essentially done: the RHS of (∗) is isomorphic to the RHS of (∗∗) by applying the theorem
to the free modules F1 and F2, so the LHS must be isomorphic too. Formally, we can fit the two “left-exact
sequences” into a commutative diagram:

0 // S−1Hom(M,N) //

L′

��

S−1Hom(F2, N) //

L′

S−1Hom(F1, N)

L′

0 // Hom(S−1M,S−1N) // Hom(S−1F2, S
−1N) // Hom(S−1F1, S

−1N)

(We could check that these all commute using the universal properties of localization.) This shows
S−1Hom(M,N) and Hom(S−1M,S−1N) are kernels of the “same map”, and thus are isomorphic.
(TC: You can think about formal ways to phrase a proof of this last sentence, but that’s not as important as understanding
why it’s true.)
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Question 8. Give a counterexample to Q7 whenM is not finitely presented, by exhibiting some g : S−1M →
S−1N for which there do not exist s ∈ S and f : M → N such that s · g = f

S .
(Note: you don’t have to take R to be some crazy ring for this.)

Solution. Let R = Z, M = Q, and N = Z. Let S = Z \ {0} so R[ 1S ] = Q. Then there is no nonzero
homomorphism f : M → N (since f(1) would have to be divisible by all integers). But S−1M ∼=M ∼= Q
and S−1N ∼= Q, so we can take g to be the identity Q→ Q.

In other words, we have

HomZ(Q,Z) = 0 but HomQ(Q,Q) ∼= Q 6= 0.

Just for fun, let’s see a counterexample where M is finitely generated but not finitely presented (for this we do need
a rather crazy ring). Thanks to Carsten Sprunger for showing it to me.

Let R be the ring Z[x1, . . . , xn, . . .]/(2x1, 4x2, 8x3, . . . , 2
nxn, . . .).

Let I be the ideal (x1, x2, . . . , xn, . . .) ⊆ R so that R/I ∼= Z.
Let M = R/I , let N = R, and let S = {2, 4, 8, . . .}.
Note that M is generated as an R-module by the element 1, so in particular it is finitely generated. We’ll show that

in this case, L′ : S−1 HomR(M,N)→ HomR[ 1
S ](S

−1M,S−1N) is not surjective.
First off, note that ` : R → R[ 12 ] maps xn to 0 for each n, since 2nxn = 0. In other words, `(I) = 0, so

S−1(I) = 0. Applying S−1 to the exact sequence 0→ I → N →M → 0, we get 0→ 0→ S−1N → S−1M → 0,
so S−1N → S−1M is an isomorphism (even an isomorphism of rings).

Let f ∈ HomR[ 1
S ](S

−1M,S−1N) be its inverse. This is a nonzero element of HomR[ 1
S ](S

−1M,S−1N), so in
particular this Hom-module is not zero. On the other hand, HomR(M,N) = 0: by Question 3, a homomorphism ϕ of
R-modules from R/I to R is the same thing as a homomorphism of R-modules from R to R which vanishes on I . In
other words, HomR(M,N) is the set of a ∈ R such that a · I = 0, since a homomorphism of R-modules from the free
module R to itself is just multiplication by some element of R. But such an a must be 0: if a · xn = 0, then a = 2na′

for some a′ ∈ R, but this is impossible unless a = 0.
Note that this example can turn into an example over the ring R = Z[x1, . . . , xn], by taking M = R/((xn)n∈N)

and N = R/((2nxn)n∈N); the Hom-modules we consider are exactly the same: if R is a ring, I is an ideal, and M,N

are R-modules such that I ·M = I ·N = 0, then HomR(M,N) = HomR/I(M,N).
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Question 9. Given elements r1, . . . , rk in a commutative ring R, prove the following are equivalent.

(A) These elements generate the unit ideal: (r1, . . . , rk) = R;
in other words, there exist a1, . . . , ak ∈ R such that a1r1 + · · ·+ akrk = 1.

(B) An R-module M is 0 ⇐⇒ the R[ 1ri ]-module M [ 1ri ] is 0 for all i = 1, . . . , k.

Solution. (A) =⇒ (B): Assume that (r1, . . . , rk) = R, and let M be an R-module. Note M = 0 =⇒
M [ 1ri ] = 0 is trivial, so we only have to prove the other direction.

So assume that M [ 1ri ] = 0 for all i, and choose an arbitrary m ∈M . We will show that m = 0; since
m was arbitrary this implies M = 0.

Our explicit definition of M [ 1ri ] tells us m
1 = 0 iff rn ·m = 0 for some n. Thus, for each i, there is

some ni such that rni
i m = 0. Let’s show that this implies m = 0.

Let n =
∑k

i=1 ni, and choose a1, . . . , ak ∈ R such that a1r1+ · · ·+akrk = 1. We have the following
identity:

1 = 1n = (a1r1 + · · ·+ akrk)
n =

∑
m1,...,mk∑

imi=n

aI · rm1
1 · rm2

2 · · · · r
mk
k

where the aI are some elements of R. But by the pigeonhole principle, for each term, at least one of the
mi must be at least ni. Thus, aI · rm1

1 · · · r
mk
k ·m = 0 for each such partition of n. Thus, multiplying

both sides of the above identity by m, we get that m = 0.

(B) =⇒ (A): Let I = (r1, . . . , rk) be the ideal generated by r1, . . . , rk, and let M be the R-module R/I .
We claim that M [ 1ri ] = 0 for all i. Indeed, for all m ∈M we have ri ·m = 0. Thus m

1 = 0 ∈M [ 1ri ],
and so all m

rki
= 0.

If we now assume (B), it tells us that R/I = 0; in other words, I = R, as desired.
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Question 10. Let R be a commutative ring, and let M be an R-module.
Prove that if M is finitely presented, the following are equivalent.

(A) M is projective. (see Q2)

(B) M is locally free, meaning there exist r1, . . . , rk in R with (r1, . . . , rk) = R

such that M [ 1ri ] is a free R[ 1ri ]-module for all i = 1, . . . , n.

(C) MP is a free RP -module for all prime ideals P .

(D) Mm is a free Rm-module for all maximal ideals m.

Solution. We’ll prove (B) =⇒ (A) =⇒ (C) =⇒ (D) =⇒ (B).

(B) =⇒ (A): Consider an exact sequence 0 → K → F
π−→ M → 0 with F finitely generated and free

and K finitely generated. By Question 2, in order to show that M is projective, it is necessary and
sufficient to show that this short exact sequence splits, i.e. that there is some map σ :M → F such that
π◦σ = idM (since this implies that F 'M⊕K). In other words, the short exact sequence splits if and
only if idM is in the image of theR-module homomorphism p = π∗ : HomR(M,F )→ HomR(M,M)

(where p(f) = π ◦ f ).

We claim this holds if and only if p is surjective. One direction is obvious: if p is surjective then idM is
in the image. Conversely, if the short exact sequence splits then HomR(M,F ) ' HomR(M,M)⊕
HomR(M,K) and π∗ corresponds to projection onto the first factor, which is certainly surjective.

Fix r1, . . . , rk with (r1, . . . , rk) = R. We know from class (plus Question 9 for the last equivalence)
that for an R-module X we have

X = 0 ⇐⇒ XP = 0 ∀P ⇐⇒ Xm = 0 ∀m ⇐⇒ X[
1

ri
] = 0 ∀i.

Similarly, for an R-module homomorphism f : Y → Z, we have (applying the previous equivalences
to X = coker(f)):

f surjective ⇐⇒ fP surjective ∀P ⇐⇒ fm surjective ∀m ⇐⇒ f [ 1ri ] surjective ∀i.

Therefore we have

M projective ⇐⇒ p : HomR(M,F )→ HomR(M,M) surjective

⇐⇒ pP : HomR(M,F )P → HomR(M,M)P surjective ∀P
⇐⇒ pm : HomR(M,F )m → HomR(M,M)m surjective ∀m
⇐⇒ p[ 1ri ] : HomR(M,F )[ 1ri ]→ HomR(M,M)[ 1ri ] surjective ∀i
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However, our M is finitely presented, so we may apply Question 7 which describes the localiza-
tions of HomR(M,F ): we have HomR(M,N)P = HomRP

(MP , NP ), and HomR(M,N)m =

HomRm(Mm, Nm), and HomR(M,N)[ 1ri ] = HomR[ 1
ri
](M [ 1ri ], N [ 1ri ]). Therefore

M projective ⇐⇒ p : HomR(M,F )→ HomR(M,M) surjective

⇐⇒ HomRP
(MP , FP )→ HomRP

(MP ,MP ) surjective ∀P
⇐⇒ HomRm(Mm, Fm)→ HomRm(Mm,Mm) surjective ∀m
⇐⇒ HomR[ 1

ri
](M [ 1ri ], F [

1
ri
])→ HomR[ 1

ri
](M [ 1ri ],M [ 1ri ]) surjective ∀i

But since FP is a free module (and Fm and F [ 1ri ] too), the argument at the beginning of this section
shows

HomRP
(MP , FP )→ HomRP

(MP ,MP ) surjective ⇐⇒ MP projective

HomRm(Mm, Fm)→ HomRm(Mm,Mm) surjective ⇐⇒ Mm projective

HomR[ 1
ri
](M [ 1ri ], F [

1
ri
])→ HomR[ 1

ri
](M [ 1ri ],M [ 1ri ]) surjective ⇐⇒ M [ 1ri ] projective

So combining with the previous equivalences, we’ve showed that when M is finitely presented:

M projective ⇐⇒ MP projective ∀P
⇐⇒ Mm projective ∀m
⇐⇒ M [ 1ri ] projective ∀i

In particular, since free modules are projective, we see that any of (B) or (C) or (D) implies (A).

(A) =⇒ (C): Since M is finitely generated, we have a short exact sequence:

0→ N → F →M → 0

with F ∼= Rn finitely generated and free. Since M is projective, this implies that M ⊕N ' F . So
we’ve shown that a finitely generated projective module is automatically a direct summand of a finitely
generated free module.2 This implies that FP 'MP ⊕NP , and FP ∼= RnP is free because F ∼= Rn is.
So MP is a finitely generated projective module over the local ring RP . It remains to show that such
an MP is free.

Now, let m1, . . . ,m` be a set of generators of MP such that ` is as small as possible, and n1, . . . , nk
a set of generators of NP such that k is as small as possible. Now, let F = FP /PFP , M =

MP /PMP , and N = NP /PNP ; these are all finitely generated modules over the field RP /PRP .
Since m1, . . . ,m` generate MP , the images of m1, . . . ,m` span M . Thus, some subset of size `′ ≤ `
of these elements form a basis forM . However, Nakayama’s lemma implies that if some set of elements
of the finitely generated module MP form a basis of M , then they generate MP . Thus, since we
assumed ` was as small as possible, `′ = ` and the images of m1, . . . ,m` are linearly independent in

2Note that since N is a direct summand of F as well, N is also finitely generated. Thus, a finitely generated projective module is
automatically finitely presented.
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M . Similarly, the images of n1, . . . , nk are linearly independent inN . But since F =M⊕N , this says
that the images of m1, . . . ,m`, n1, . . . , nk are linearly independent in F , i.e. they form a basis of F .
Since dimF = rank(FP ), this says that FP ' R`+kP . But the `+ k elements m1, . . . ,m`, n1, . . . , nk
generate FP , so they must actually be a basis by Question 4. In particular, they are linearly independent
over RP , so MP and NP are free.

If we pick our free module more parsimoniously, we can simplify the proof (and avoid using Q4):
let m1, . . . ,mk be a set of generators of MP of minimal size, and let FP = Rk. (There is not
really an F here, but it doesn’t matter.) Then the map sending the basis elements of FP to the
mi is a surjection FP → MP → 0. Since MP is projective we have FP ' MP ⊕ NP , and thus
k = dimF = dimM + dimN . But as we saw above, since k is as small as possible, the mi need
to be linearly independent in M by Nakayama’s lemma, so dimM = k, and thus N = 0. Then by
Nakayama’s lemma again, this implies NP = 0, so MP

∼= FP .

(C) =⇒ (D): Trivial, since maximal ideals are prime.

(D) =⇒ (B): The key is the following lemma.

Lemma 4. If M is a finitely presented R-module and m is a maximal ideal of R such that Mm is free,
then there is some f ∈ R, f 6∈ m such that M [ 1f ] is free.

The proof of this lemma is rather long, so we give it below. For now, we use it to prove (D) =⇒ (B).
If (D) is true, then for every maximal ideal m of R, there is some fm ∈ R \ m such that M [ 1

fm
] is

free. Consider the ideal Igenerated by (fm) where m ranges over all maximal ideals of R. For every
maximal ideal m, fm 6∈ m, so I 6⊂ m. Thus, I is not contained in any maximal ideal, so I = (1). In
particular, we have some equation 1 = a1fm1 + a2fm2 + · · ·+ akfmk

. Thus, we can take fk = fmk
,

and this says (f1, . . . , fk) = 1 and M [ 1
fk
] is free.

Proof of Lemma 4. 3 We have an isomorphism ϕm : Fm
∼−→ Mm, where F is a finitely generated free R-

module. To prevent notation from getting out of hand, we’ll prove this by repeatedly invoking the following
more general claim:

3This is a prototypical example of a very general phenomenon, often called “spreading out”. If I have a finitely presented module
over a (commutative) ring R, then if a statement is true after localizing at a prime ideal P , it is already true after inverting some
f ∈ R− P . In geometric language, “a property which is true at a point is true in an open neighborhood of a point”. This sort of
statement generalizes in many different directions. Rather than modules over a ring, we could consider some more general algebraic
or algebro-geometric structures which have a notion of “finitely presented” (for example, if A→ B is a ring homomorphism, we can
say when B is finitely presented as an A-algebra). Also, instead of localization at a prime vs. localization at an element, we can talk
about any process that is in some sense a “limit” of finite versions of the process. In our context, localizing at a prime corresponds to
inverting every element of the (usually) infinite set R \ P , and localizing at an element corresponds to inverting some finite subset of
R \ P (using the fact that inverting finitely many elements is the same thing as inverting their product).
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Claim 5. LetM,N be modules over a ringR, and let P be a prime ideal ofR. Then the following statements
are true:

(i) If M is finitely generated and f, g : M → N are two homomorphisms such that fP = gP as ho-
momorphisms MP → NP , then there is some r 6∈ P such that f [1r ] = g[1r ] as homomorphisms
M [1r ]→ N [1r ].

(ii) If M is finitely presented and fP : MP → NP is a homomorphism, then there is some r 6∈ P and a
homomorphism f :M [1r ]→ N [1r ] such that fP = f

S with S = R− P .

Now, to prove Claim 4 from Claim 5, we can first apply part (ii) to ϕm and ψm = ϕ−1m . This gives us
some r0, r′0 6∈ P and homomorphisms ϕ0 : F [

1
r0
] → M [ 1r0 ], ψ0 : M [ 1

r′0
] → F [ 1

r′0
] with (ϕ0)m = ϕm and

(ψ0)m = ψm. Now we can invert the element r1 := r0r
′
0 and localize ϕ0, ψ0 to get maps

ϕ1 := ϕ0[
1

r′0
] : F [

1

r1
]→M [

1

r1
], ψ1 := ψ0[

1

r0
] : M [

1

r1
]→ F [

1

r1
]

Since everything we’ve inverted is not in m, we’ve preserved the property that (ϕ1)m = ϕm and (ψ1)m = ψm.4

We hope that ψ1 = ϕ−11 , but this might not be true yet. However, we know that (ψ1 ◦ ϕ1)m =

(ψ1)m ◦ (ϕ1)m = ψm ◦ ϕm = idFm = (idF [ 1
r1

])m and likewise (ϕ1 ◦ ψ1)m = (idM [ 1
r1

])m. Now, let’s

rename R[ 1r1 ] as R and likewise for M and F . We can invoke (i) twice, to get r2, r′2 6∈ P such that
(ψ1 ◦ ϕ1)[

1
r2
] = (idF )[

1
r2
] and (ϕ1 ◦ ψ1)[

1
r′2
] = (idM )[ 1

r′2
]. Inverting r3 = r2r

′
2, we see that ψ3 := ψ1[

1
r3
]

and ϕ3 := ϕ1[
1
r3
] are inverse to each other, so M [ 1r3 ] ' F [

1
r3
].

Remember that we renamed our original M [ 1r1 ] as M and likewise for F , so what we’ve actually proved
is that for r4 = r1r3, we have M [ 1r4 ] ' F [

1
r4
], so M [ 1r4 ] is free.

Now, let’s prove Claim 5:

(i) By replacing f, g with f − g, 0, it suffices to prove the statement in the case g = 0, i.e. we want to
show that if fP = 0 then f [1r ] = 0 for some r 6∈ P . Let m1, . . . ,mn be generators for M . Then since
fP = 0, in particular, fP (`M (mi)) = 0 ∈ NP for 1 ≤ i ≤ n with `M : M → MP the localization
map. But fP (`M (mi)) = `N (f(mi)) (by the definition of S−1f ), so for each 1 ≤ i ≤ n there is some
ri 6∈ P such that rif(mi) = 0. Letting r = r1 · r2 · · · · · rn we see that rf(mi) = 0 for each i. Thus,
f [1r ](mi) = 0 in N [1r ]. But (the images of) mi generate M [1r ], so f [1r ] = 0, as desired.

(ii) We already showed in Question 7 that the natural restriction map L : f 7→ f
S may be canonically

identified with the localization map

HomR(M,N)
` // S−1HomR(M,N)

L′ // HomS−1R(S
−1M,S−1N)

i.e. L′ is an isomorphism. Since L′ and ` moreover commute with varying S (i.e. if r 6∈ P , the L′

sending f to fP factors through the L′ sending f to f [1r ], and similarly for `), we can see that Claim

4This comes from the fact that if S0 ⊆ S1, then S−1
1 (S−1

0 M) ' S−1
1 M , and this isomorphism takes the localization map

`1,M : M → S−1
1 M to `

1,S−1
0 M

◦ `0,M , with `
1,S−1

0 M
: S−1

0 M → S−1
1 (S−1

0 M) and `0,M : M → S−1
0 M the localization maps.

This statement is much harder to state than it is to prove!
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4 (ii) is equivalent to the statement that if fP ∈
(
HomR(M,N)

)
P

, there is some r 6∈ P and some
f ∈

(
HomR(M,N)

)
[1r ] such that the image of f in

(
HomR(M,N)

)
P

is equal to fP .

Now, this is a perfectly general fact: if M is any module whatsoever and m ∈ MP , there is some r
such that m lifts to M [1r ]. Indeed, this is clear from the very definition of MP : we can write m = m0

r

with m0 ∈M, r 6∈ P , so this gives us the lift we want.

Remember that the proof of Question 7 works by using a finite presentation F2 → F1 → M → 0

to identify HomR(M,N) with the set of maps from F1 to N which vanish on the image of F2, and
similarly for HomS−1R(S

−1M,S−1N). So if we hadn’t yet proved Question 7, we could directly
prove Claim 4 this way, i.e. by considering the image of the basis elements of (F1)P in NP and finding
an r such that they lift to N [1r ], then finding a possibly “bigger” r′ (i.e. replacing r with r′ = rr′′)
which makes all of the relations coming from F2 trivial in N [ 1r′ ]. But this is essentially just repeating
the argument we already gave!

(See last page for comments on what happens if we don’t assume finite presentation.)

14



Question 11. (Hard) Extend the equivalence in Q10 to include the following equivalent condition
(still under the assumption that M is finitely presented):

(E) Every linear dependence in M is trivial, in the sense below.

A linear dependence in M is a list of module elements m1, . . . ,mn ∈M and ring elements r1, . . . , rn ∈ R
such that r1m1 + · · ·+ rnmn = 0 in M .

A trivial linear dependence is, colloquially, something like

(10v1 − 3v2)

+2·(−3v1 + v2)

+(−4v1 + v2)

=(10− 6− 4)v1 + (−3 + 2 + 1)v2

=0v1 + 0v2 = 0.

Formally, a linear dependence is trivial if there exist module elements v1, . . . , vk ∈ M and ring elements
aji ∈ R such that

a1i v
1 + a2i v

2 + · · ·+ aki v
k = mi for all i

r1a
j
1 + r2a

j
2 + · · ·+ rna

j
n = 0 for all j

Solution. To see that (A) =⇒ (E), write M ⊕ N = F with F free. Then we can show that (E) is true
for F . Let e1, . . . , ek be a basis for F , and consider some m1, . . . ,mn ∈ M , r1, . . . , rn ∈ R such that
r1m1 + · · ·+ rnmn = 0 in F . Now, we can define aji ∈ R uniquely by:

mi = a1i e1 + · · ·+ aki ek

i.e. the aji are the components of mi with respect to the ej . Now, we have:

0 =
∑
i

rimi =

∑
i

ria
1
i

 e1 + · · ·+
∑
i

(
ria

k
i

)
ek

By the definition of linear independence of the ej , this means that for each j, we have:

r1a
j
1 + · · ·+ rna

j
n = 0

To see that (E) for F implies (E) for M , let 0 = r1m1 + · · · + rnmn be a linear dependence in M . By
replacing mi with (mi, 0), this becomes a linear dependence in F , which must be trivial. Let v1, . . . , vk ∈ F
and aji ∈ R be as in the definition of a trivial linear dependence. We can write vi = viM + viN uniquely. We
know that, for all i, the following equation holds:

(mi, 0) = a1i v
1 + a2i v

2 + · · ·+ aki v
k = a1i (v

1
M + v1N ) + · · ·+ aki (v

k
M + vkN )

Thus, comparing M and N parts, we get that

mi = a1i v
1
M + · · ·+ ani v

1
M
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In addition, the equation
r1a

j
1 + · · ·+ rna

j
n = 0

still holds (this is just an equation over R, so it has nothing to do with M or F ). Thus, the relation is trivial in
M .

We’ll prove that (E) =⇒ (A) by a more general fact:

Claim 6. If M is finitely presented and N is any module which satisfies the condition (E), then any
homomorphism ϕ from M to N can be factored as M → F → N with F a free module.

This suffices to prove that (E) =⇒ (A), since we can take M = N and ϕ = idM , so this says we have
maps σ : M → F and π : F → M such that π ◦ σ = idM . This requires π to be surjective and σ to be a
splitting of the exact sequence 0→ kerπ → F →M → 0, so M ⊕ kerπ ' F , and M is projective.

Now, let’s prove the claim. Choose a finite presentation F2 → F1 →M → 0 with F1, F2 free and finitely
generated. Let m1, . . . ,mk be the images of a basis e1, . . . , ek of F1, so in particular they generate M . Now,
let ρj = r1je1 + · · · + rkjek, j = 1, . . . , ` be the images of a basis of F2 in F1. We’ll prove the claim by
induction on `. If ` = 0, there’s nothing to prove since M is free. Now, we can assume we know the claim
for any finitely presented module M ′ which has a presentation F ′2 → F ′1 →M ′ → 0 with F2 generated by at
most `− 1 elements. Take M ′ = F1/(ρ1, . . . , ρ`−1), so M =M ′/ρ`.

Now, we get a map ϕ′ : M ′ → N by composing ϕ with M ′ →M . Since F1 →M factors through M ′,
we can see that M ′ is generated by the images of e1, . . . , ek as well. Now, there is a free module F0 with a
map α0 : M

′ → F0 and β0 : F0 → N such that β0 ◦ α0 = ϕ′. We want to use this to build a free module F
and maps α : M → F , β : F → N such that β ◦ α = ϕ. Suppose we can build F such that we have a map
α′ : M ′ → F and β : F → N such that β ◦ α′ = ϕ′. Then, in order to get α :M → F such that β ◦ α = ϕ,
we just need to show that α′(ρ`) = 0 (since M =M ′/ρ`). In particular, if α0(ρ`) = 0, we’re done. So let’s
look at α0(ρ`) and try to kill it.

We can write α0(ρ`) as α0(ρ`) = r1f1 + · · · + rqfq for f1, . . . , fq a basis of F0. Now, β0(α0(ρ`)) =

ϕ′(ρ`) = 0, since ϕ′ factors through ϕ : M → N and ρ` = 0 in M . Thus, β0(α0(ρ(`)) = 0 in N , so we
have the following linear relation in N , where we let ni = β0(fi):

0 = β0(α0(ρ`)) = r1n1 + · · ·+ rqfq

Since N satisfies the condition (E), it follows that there are v1, . . . , vp ∈ N and for each i = 1, . . . , q, we
have a1i , . . . , a

p
i ∈ R such that:

ni = a1i v
1 + · · ·+ api v

p (1)

and for all 1 ≤ p′ ≤ p:
r1a

p′

1 + · · ·+ rqa
p′
q = 0 (2)

Now, let F be the free module generated by the p elements e1, . . . , ep, and let β : F → N be defined by
sending ep

′
to vp

′
for 1 ≤ p′ ≤ p. We define a map τ : F0 → F by sending fi to a1i e

1 + · · ·+ api e
p. Then,

equation (1) says exactly that β ◦ τ = β0. Thus, ϕ′ = β0 ◦ α0 = β ◦ τ ◦ α0. So, let α′ = τ ◦ α0. We now
need to show that α′(ρ`) = 0, or in other words that τ(α0(ρ`)) = 0. But this is exactly what Equation (2)
says: ρ` = r1f1 + · · ·+ rqfq maps to the element of F whose ep

′
-component is:

r1a
p′

1 + · · ·+ rqa
p′

1 = 0

This concludes the proof of (E) =⇒ (A).
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ALTERNATE PROOF: (E) =⇒ (C)
Instead of this direct proof that (E) =⇒ (A), we could also show that (E) =⇒ (C).5 It’s not hard to see

that if M satisfies condition (E), then MP does as well, since a linear dependence in MP becomes one in
M after clearing denominators by multiplying by an element s 6∈ P . Then when we get the aji and the vj ,
these give elements in RP ,MP respectively, and we can divide these by s to show that the original linear
dependence in MP was trivial.

Thus, what we need to prove is that if M is a finitely generated module over a local ring R with maximal
ideal m and M satisfies (E), then M is free. In order to do this, we’ll actually show that if m1, . . . ,mn ∈M
are linearly independent in M/m, then the submodule of M generated by m1, . . . ,mn is free. Taking
m1, . . . ,mn to be a minimal set of generators of M then suffices. (Since if the m1, . . . ,mn are linearly
dependent mod m, some subset of them generates M/m and therefore generates M by Nakayama’s lemma).

We can see this by induction on n. Consider a single element m ∈ M . Then the kernel of the map
R → M sending 1 to m is the ideal I of elements r ∈ R such that r · m = 0. But by Property (E), if
r ·m = 0, then there are elements v1, . . . , vk ∈ M and a1, . . . , ak ∈ R such that m = a1v1 + · · ·+ akvk

and raj = 0 for all j = 1, . . . , k. But m 6∈ mM , since then {m} would not be linearly independent mod m.
Thus, for at least one j, aj 6∈ m. Since R i local, this implies that aj is a unit, so raj = 0 implies that r = 0.

Now, consider m1, . . . ,mn which are linearly independent mod n and assume that for any smaller set
of elements of M which are linearly independent mod m, the submodule they generate is free. We want to
show that m1, . . . ,mn are linearly independent over R. So assume that r1m1 + · · ·+ rnmn = 0. Then we
have v1, . . . , vk ∈ M and aji ∈ R such that

∑
i ria

j
i = 0 and mi =

∑
j a

j
iv
j . If for some i, aji ∈ m for all

j = 1, . . . , k, then mi ∈ mM , so it is 0 mod m and thus cannot be part of a linearly independent set. So,
for some j such that aji 6∈ m (and thus aji is a unit), we can multiply the equation

∑
i ria

j
i = 0 by (aji )

−1 to
solve for ri. Thus, each ri is an R-linear combination of the others. In particular, we have some equation
r1 = c2r2 + · · ·+ cnrn. This lets us rearrange the equation r1m1 + · · ·+ rnmn as:

r2(m2 + c2m1) + r3(m3 + c3m1) + · · ·+ rn(mn + cnm1) = 0

But since m2, . . . ,mn are linearly independent mod m, so are the n− 1 elements (m2 + c2m1), . . . , (mn +

cnm1). Therefore, these are linearly independent over R, which implies that r2, . . . , rn = 0. So now, the
equation r1m1 + · · ·+ rnmn = 0 becomes r1m1 = 0, and we already saw that this cannot happen.

5and this proof will actually go through for M any finitely generated module, without need for finite presentation. It’s also true,
and not hard to show, that (C) =⇒ (E) for any finitely generated module. So, since (C) is strictly weaker than (A) for very crazy
rings, we can’t hope to prove (A) from (E) without using the finite presentation hypothesis.
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Remarks from Dan on Q10:
To what extent was finite presentation crucial in our arguments here? We saw in the proof that (A) =⇒ (C)

that a finitely generated projective module is finitely presented. It turns out that if M is locally free in the
sense of (B) and finitely generated, it is automatically finitely presented and thus projective. The proof isn’t
hard: take a short exact sequence 0 → K → F → M → 0. Since M [ 1ri ] is free and therefore finitely
presented, K[ 1ri ] is finitely generated. Then since there are finitely many ri, we can throw together generators
of each K[ 1ri ] and multiply them by appropriate powers of ri to get a set of N elements of K and a map from
RN to K. This map is surjective after inverting ri for each i, so it is surjective. So finitely generated locally
free is equivalent to finitely generated projective, and both of these imply that we’re already finitely presented.
This is also equivalent to being locally free with all ranks finite.

However, the fact that (D) =⇒ (B) (or even the fact that (C) =⇒ (B)) does crucially use the finite
presentation hypothesis, and it’s false in general otherwise: there are finitely generated modules M such that
MP is free for each prime ideal P but M is not locally free in the sense of (B). However, such modules only
occur over very crazy rings: for example, this cannot occur over a domain. Equivalently by what we said
above, M is not finitely presented. It turns out that a finitely generated module M such that Mm is free of
rank r(m) for each m is finitely presented (and thus projective) iff r(m) is a (locally) constant function on the
set of maximal ideals of R. (Locally here just means that we have some (r1, . . . , rk) generating the unit ideal
such that this function is constant after inverting each ri).

This isn’t actually so hard to see: we can use Claim 4, (i) (which only uses finite generation, not finite
presented-ness) to show that we can lift an isomorphism FP

∼−→MP from RP to a homomorphism over R[1r ]
for some r 6∈ P , and to show that M is locally free, it suffices to show that we can find some r′ 6∈ P such
that this lifts to an isomorphism. (i.e. because then for every P there is an r′ 6∈ P such that M [ 1r′ ] is free,
and then as before we can find some finite collection of such r′ which generate the unit ideal). This is an
isomorphism iff it is an isomorphism after localizing at every maximal ideal m 3 r, by a small variant of the
argument used for (B) =⇒ (A) (apply the same argument to the kernel of a homomorphism that we applied
to the cokernel). We can replace r with some r′ 6∈ P such that the rank of M [ 1r′ ] is constant because the rank
is locally constant. Since Mm is free of the same rank as MP , Fm and Mm are free modules of the same rank,
so we can apply Question 4 to show that Fm →Mm is an isomorphism iff it is surjective. But if M is finitely
generated and N →M is a homomorphism such that NP →MP is surjective, then the same thing is true
for N [1r ]→M [1r ].

6

6To see that the locally constant rank condition is automatically satisfied over a domain - or actually a more general ring, as we’ll
see - If P ⊆ Q are prime ideals with MQ free, then MP is a localization of MQ, so MP is free of the same rank. Thus if Mm is
free for all maximal ideals m, MP is free for all prime ideals P , and the rank function is constant as soon as we know that it is the
same for all minimal prime ideals. In particular, if R is a domain, (0) is the unique minimal prime ideal, so this always holds. If
R has finitely many minimal prime ideals, it then suffices to show that if P1, P2 are two minimal primes, there is some maximal
ideal m containing both of them (since the rank and m is equal to the rank at P1 and at P2). This isn’t actually true in general, but if
no maximal ideal m contains both P1 and P2, then the ideal P1 + P2 must be the unit ideal, so R/(P1 ∩ P2) ' R/P1 × R/P2

by the Chinese Remainder Theorem. Let e1, e2 ∈ R correspond to (1, 0) and (0, 1) respectively under this isomorphism. Then
e1 + e2 = 1, and the image of Pi in R[ 1

ei
] is the unit ideal. So R[ 1

ei
] has one fewer minimal prime than R does, and we can proceed

by induction to see that the rank function for M [ 1
ei
] is locally constant, so the rank function for M is locally constant. I found this

argument in question number 1450205 on Math Stack Exchange.
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