> Math 196-47, Mr. Church
> Some sample problems for the final (covering material since the second midterm).

I think everyone is fairly comfortable with the material that was on the first midterm. For material we covered before the second midterm, the sheet I made up back then still applies. Remember that orthogonal matrices and orthogonal projections are covered in Chapters 9.1 and 9.2. For material from Chapter 8.3, see "Homework" 14 on Chalk.

- Given an explicit matrix, find the characteristic polynomial; find the eigenvalues; find the algebraic and geometric multiplicities; find a basis for the eigenspaces; determine whether or not it is diagonalizable.
- Write down a matrix so that $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$ are eigenvectors (with whatever eigenvalues you want).
- Exercise 7.1.10: Let A be an arbitrary $n \times n$ matrix with the special property that the sum of the entries of each row is 7 . Show that 7 is an eigenvalue of A. (Hint: find an eigenvector.)
- Exercise 7.2.3.
- Exercise 7.2.10.
- Exercise 7.3.1. (We did not cover Section 7.3, but this particular exercise doesn't use anything from the section.)
- (1) Given $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, show that if $\left\{T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{n}\right)\right.$ is linearly independent, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{n}.
(2) Is the converse true? That is, if $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis, does it follow that $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is linearly independent?
(3) Is (1) true or false if you replace "is linearly independent" with "spans $\mathbb{R}^{m "}$? How about (2)?
- Define the "zero transformation" $Z: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $Z(\vec{v})=\overrightarrow{0}$ for all \vec{v}. Assume that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfies $T \circ T=Z$; is it necessarily true that $T=Z$? Explain or give a counterexample.

The following question is harder, but still may be good practice.

- Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $T \circ T=T$. Show that every vector $\vec{v} \in \mathbb{R}^{n}$ can be written uniquely as

$$
\vec{v}=\vec{v}^{\mathrm{k}}+\vec{v}^{\mathrm{i}}
$$

where $\vec{v}^{\mathrm{k}} \in \operatorname{ker} T$ and $\vec{v}^{\dot{i}} \in \operatorname{im} T$.

